ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет Физики

Полькин Артём Владиславович

«Эффект Джозефсона в неравновесных структурах сверхпроводник-ферромагнетик-сверхпроводник»

Выпускная квалификационная работа по направлению подготовки 03.03.02 Физика образовательная программа «Физика»

Научный руководитель:

Иоселевич Павел Алексеевич, канд. физ.-мат. наук

Москва 2022

Аннотация

В экспериментальном исследовании джозефсоновского S(N/F)S - контакта (сверхпроводник - нормальный металл/ферромагнетик - сверхпроводник) в дифференциальном сопротивлении обнаруживается сдвоенная особенность на напряжениях, меньших щели [7]. При увеличении внешнего магнитного поля до значений, соответствующих коэрцетивному полю, две эти особенности сливаются в одну. В данной работе рассмотрено возможное объяснение этого эффекта как следствия андреевских отражений, а также получена вольт-амперная характеристика SNS- и S(N/F)S-контактов с малой прозрачностью границ в предельном случае отсутствия взаимодействия с подложкой и в случае, когда оно играет определяющую роль.

Содержание

Аннотация 1						
Вв	едени	ие	4			
1	SIN	NIS. Случай сильного взаимодействия с подложкой				
	1.1	Постановка задачи	6			
		1.1.1 Опережающая и запаздывающая компоненты	7			
		1.1.2 Келдышевская компонента	9			
	1.2	Первый порядок	11			
		1.2.1 Аномальные функции Грина	11			
	1.3	Второй порядок	12			
		1.3.1 Нормальные функции Грина	12			
		1.3.2 Аномальные функции Грина	13			
		1.3.3 Функции распределения	14			
	1.4	Третий порядок	15			
		1.4.1 Нормальные функции Грина	15			
		1.4.2 Аномальные функции Грина	16			
		1.4.3 Функции распределения	16			
	1.5	Потенциал	17			
	1.6	Вычисление тока	17			
		1.6.1 Первый порядок	18			
		1.6.2 Второй порядок	18			
		1.6.3 Третий порядок	19			
		1.6.4 Четвёртый порядок	21			
	1.7	Обсуждение полученных результатов	23			
2	SIN	SINIS. Случай слабого взаимодействия с подложкой 2				
	2.1	Постановка задачи	24			
	2.2	Келдышевская компонента вблизи левой границы	25			
	2.3	Решение у правой границы и сшивка	27			
	2.4	Вычисление тока	28			
		2.4.1 Эквивалентные цепи	29			
	2.5	Применение к SINIS-контакту	30			

		2.5.1	Асимптотические выражения для сопротивлений	31			
	2.6	Обсуждение полученных результатов					
		2.6.1	Границы применимости теории	33			
		2.6.2	Сравнение методов	34			
3	Системы со слабым обменным полем						
	3.1	Сильное взаимодействие с подложкой					
		3.1.1	Зависимость тока от напряжения и обменного поля	36			
	3.2	Слабое взаимодействие с подложкой					
	3.3	Обсуждение полученных результатов					
		3.3.1	Сравнение предельных случаев	39			
		3.3.2	Приложение к эксперименту	40			
3a	Заключение						
Ст	Список литературы						
A	При	ложени	ие. SINIS. Случай сильного взаимодействия с подложкой	45			
	A.1	Попра	вки к функции распределения	45			
	A.2	Нестационарные вклады в ток во втором порядке					
	A.3	Все вклады в стационарный ток в третьем порядке					
	A.4	Стаци	онарный ток в четвёртом порядке	49			

Введение

Исследование слабых сверхпроводящих контактов является важной темой в современной физике. В джозефсоновских контактах наблюдаются эффекты близости. В частности, андреевские отражения – отражение электронов из нормальной области от границы в виде дырок с переносом в сверхпроводник куперовской пары [5, 14]. А также появление минищели в плотности состояний нормального металла, то есть появление у металла слабых сверхпроводящих свойств [8, 5].

Не менее важны структуры, в которых стандартное ток-фазовое соотношение ($I = I_c \sin \varphi$) изменяется. В частности, особенный интерес представляет реализация так называемых π -контактов [4], соотношение Джозефсона изменяет знак. Важнейшее семейство контактов, в котором наблюдается 0- π - переход – контакты, в которых в качестве несверхпроводящего элемента используется ферромагнетик. Однако, экспериментальное наблюдение таких систем затруднено достаточно большим значением обменного поля. Для того, чтобы уменьшить это поле, рассматриваются системы, в которых нормальная область представляет из себя бислой нормального металла и ферромагнетика [7, 6].

Такие структуры, как правило, оказываются грязными, то есть из-за сильного беспорядка движение электронов диффузно. Теоретическое описание этих систем осуществляется при помощи уравнения на функции Грина, впервые выведенного Узаделем [18]. При его помощи возможно получить критический ток в S(N/F)S-контакта с прозрачными границами, имеющий вид затухающих осцилляций от длины контакта [10]. Также возможно численно изучить влияние андреевских отражений для SNS-контакта на дифференциальную проводимость в терминах необходимых для учёта неравновесности келдышевских функций Грина. Влияние этого эффекта оказывается ослабевающим при увеличении длины контакта [5]. Если дополнить уравнение Узаделя туннельными граничными условиями в форме Куприянова-Лукичёва [12, 11], то в случае низкой проницаемости границ и отсутствия взаимодействия с подложкой для достаточно длинного контакта возможно развить подход, позволяющий описывать ток в терминах эквивалетных электрических цепей [3], в таком случае качественно зависимости аналогичны случаю хорошего контакта, однако при менее прозрачных границах эффект андреевских отражений становится более

4

заметным.

Целью данной работы является изучение вольт-амперной характеристики длинного SINIS- и SI(N/F)IS-контактов в двух противоположных предельных случаях: сильного взаимодействия с подложкой и когда оно пренебрежимо мало. Такое взаимодействие в главном приближении приводит к термализации электронов в нормальной области из-за электрон-фононного взаимодействия. Первая часть представленной работы содержит решение уравнения Узаделя для SINIS'а в случае, когда описанная термализация важна, методами теории возмущений. Во второй части рассмотрен противоположный предельный случай, описанный в работе [3]. В третьей части представлено обобщение предыдущих результатов на системы со слабым ферромагнитным обменом в несверхпроводящей области.

1 SINIS. Случай сильного взаимодействия с подложкой

В этой части работы описано получение гриновских функций и функций распределения, полагая взаимодействие контакта с резервуаром сильным, при помощи метода, аналогичного описанному в [17]. Затем с их помощью будет получено выражение для тока в интегральной форме, которое будет изучено численно и асимптотически при интересующих значениях напряжения.

1.1 Постановка задачи

Рис. 1: Схематичное изображение контакта. Длина контакта предполагается достаточно большой $\varepsilon_{\text{Th}} \equiv D/L^2 \ll \Delta (D - коэффициент диффузии), а попереч$ ные размеры контакта много меньше продольных.

В качестве модели в этой части рассматривается длинный диффузный симметричный SINIS-контакт при низких температурах, к которому приложено постоянное напряжение. Контакт предполагается эффективно одномерным, то есть функции Грина не зависят от поперечных координат, этому соответствует однородность структуры в поперечном направлении, а для однородности взаимодействия с подложкой требуется малая толщина контакта (см. Рис. 1). Температура, в соответствии с экспериментом [7], предполагается много меньшей щели. Также предполагается, что эффектами, возникающими от решения уравнения самосогласования на щель можно пренебречь, а все когеретные эффекты в силу большой длины контакта экспоненциально подавлены, а значит различие сверхпроводящей фазы на левом и правом берегу можно не учитывать.

1.1.1 Опережающая и запаздывающая компоненты

Задача решалась при помощи уравнения Узаделя, которое в нормальной области принимает следующий вид, где x – длина, измеренная в единицах L (сверхпроводникам соответствуют $x = \pm 1/2$), $\varepsilon_{\text{Th}} = D/L^2$ – энергия Таулесса $(D - коэффициент диффузии), r = R_{SN}/R_N \gg 1$ (R_{SN}, R_N – сопротивление сверхпроводящей границы и сопротивление нормальной области соответственно):

$$-\varepsilon_{\mathrm{Th}}\partial_x\left[\check{G}\circ\partial_x\check{G}\right] - i\varepsilon\left[\check{\sigma}_3,\check{G}\right] + \frac{1}{2}\partial_T\left[\check{\sigma}_3,\check{G}\right]_+ + i\varphi_-\check{G} = \check{I}^{\mathrm{St}}$$
(1)

$$\pm \check{G}\partial_x \check{G} = \frac{1}{2r} \left[\check{G} \circ, \check{G}_{\text{right, left}} \right]$$
(2)

Где свёртки берутся в вигнеровском представлении ($t = \frac{t_1+t_2}{2}$; $\tau = t_1 - t_2$). По времени τ совершается преобразование Фурье к энергии ε . Верхний индекс обозначает функцию, на которую действует оператор:

$$A \circ B(\varepsilon, t) = \exp\left[\frac{i}{2} \left\{\partial_t^B \partial_\varepsilon^A - \partial_t^A \partial_\varepsilon^B\right\}\right] A(\varepsilon, t) B(\varepsilon, t)$$
(3)

Электрический потенциал $\varphi_{-}(t_1, t_2) = \varphi(t_1) - \varphi(t_2)$ определяется из условий электронейтральности: $\varphi(t) = \frac{\pi}{4} \operatorname{Tr} \left[G^K(t, t) \right]$ [16].

В рамках данной модели функции Грина и функции распределения сверхпроводящих берегов совпадают с таковыми для объёмного сверхпроводника (калибровка предполагается $\hat{\Delta} = \Delta \hat{\sigma}_1$), иными словами даются выражениями:

$$\hat{G}_{S}^{R(A)} = \begin{pmatrix} g_{S}^{R(A)}(\varepsilon) & f_{S}^{R(A)}(\varepsilon) \\ f_{S}^{R(A)}(\varepsilon) & -g_{S}^{R(A)}(\varepsilon) \end{pmatrix}$$
(4)

$$g_S^{R(A)}(\varepsilon) = \frac{\varepsilon}{\Delta} \left(\pm \eta_S - i\xi_S \right) \tag{5}$$

$$f_S^{R(A)}(\varepsilon) = \xi_S \pm i\eta_S \tag{6}$$

$$\eta_S = \frac{\Delta \operatorname{sign} \varepsilon}{\sqrt{\varepsilon^2 - \Delta^2}} \theta(|\varepsilon| - \Delta) \tag{7}$$

$$\xi_S = \frac{\Delta}{\sqrt{\Delta^2 - \varepsilon^2}} \theta(\Delta - |\varepsilon|) \tag{8}$$

Келдышевская компонента функции Грина \hat{G}_S^K параметризована в терминах

матричной функции распределения \hat{h}_S :

$$\hat{G}_S^K = \hat{G}_S^R \circ \hat{h}_S - \hat{h}_S \circ \hat{G}_S^A \tag{9}$$

$$\hat{h}_S = \hat{\sigma}_0 \tanh\left(\frac{\varepsilon}{2T_S}\right) \tag{10}$$

К этой постановке необходимо также добавить связь между запаздывающей и опережающей компонентами функции Грина, а также добавить условие нормировки:

$$\hat{G}^A = -\hat{\sigma}_3 \hat{G}^{R\dagger} \hat{\sigma}_3 \tag{11}$$

$$\hat{G}^{R(A)} \circ \hat{G}^{R(A)} = 1 \tag{12}$$

Для того, чтобы перейти к функциям, относящимся к берегам, к которым приложено постоянное напряжение, необходимо совершить калибровочное преобразование

$$\check{G}_{\text{right,left}} = \check{S}_{\pm V/2}^{\dagger}(t_1)\check{G}_S\check{S}_{\pm V/2}(t_2)$$
$$\check{S}_V(t) = \exp\left[i\check{\sigma}_3Vt\right]$$

Здесь плюс соответствует правому берегу, а минус левому. После калибровочного преобразования (в пространстве Фурье по τ) матрицы переходят в:

$$\hat{M}_{\text{right,left}} = \begin{pmatrix} M_{11} \left(\varepsilon \pm \frac{V}{2} \right) & M_{12}(\varepsilon) e^{\pm iVt} \\ M_{21}(\varepsilon) e^{\pm iVt} & M_{22} \left(\varepsilon \pm \frac{V}{2} \right) \end{pmatrix}$$
(13)

В нормальной же области для построения теории возмущений удобно ввести параметризацию в следующем виде:

$$\hat{G}^{R(A)} = \begin{pmatrix} \pm \left(1 - g_1^{R(A)}\right) & f_1^{R(A)} \\ f_2^{R(A)} & \mp (1 - g_2^{R(A)}) \end{pmatrix}$$
(14)

Тогда в терминах заданной параметризации связь между аномальными и нормальными функциями Грина получаются из условия нормировки келдышевской функции Грина (12):

$$g_{1,2}^{R} = \frac{1}{2} \left(f_{1,2}^{R} \circ f_{2,1}^{R} + g_{1,2}^{R} \circ g_{1,2}^{R} \right)$$
(15)

В частности отсюда видно, что $g_{1,2}^R$ старшего порядка по r^{-1} . Забегая вперёд, можно отметить, что электрический потенциал φ_- также оказывается старшего порядка, более того, он экспоненциально подавлен с длиной контакта (58).

Для интеграла столкновений будет использовано τ -приближение с неэластичным временем τ_{in} , которое соответствует электрон-фононному взаимодействию с подложкой, на которой находится контакт.

1.1.2 Келдышевская компонента

Взаимодействие с подложкой обеспечивает релаксацию частиц в нормальной области. Контакт полагается настолько туннельным, что функция распределения в нормальном металле успевает термализоваться с некоторой другой эффективной температурой T_e . Условие термализации в терминах параметров обозначает, что $\gamma \equiv (\tau_{in} \varepsilon_{Th})^{-1} \gg r^{-2}$. Физически это свойство системы приводит к тому, что за время нахождения в нормальной области частица может успеть термализоваться, так как выход из нормальной области происходит редко в силу высокой туннельности. Это приводит к тому, что подщелевая структура ВАХ контакта существенно изменяется относительно случая без релаксации, что будет показано в следующей главе, и эффекты Андреевских отражений становятся параметрически малыми.

Чтобы определить значение эффективной температуры, необходимо написать уравнения теплового баланса между электрон-фононным взаимодействием с подложкой и переданной энергией, аналогичное [13, 15]. В таком случае, приходим к уравнению:

$$2P(V) = P_{e-ph} \tag{16}$$

$$P_{e-ph} = \Sigma \mathcal{V} \left(T_S^5 - T_e^5 \right) \tag{17}$$

Здесь Σ – константа взаимодействия, зависящая от материала, а \mathcal{V} – объём нормальной области. Учитывая приближения, сделанные в [15], поток тепла

можно записать в следующем виде:

$$P(V) = \frac{\Delta}{2R_N} \left(\Delta \left[\left\{ K_0 \left(\frac{\Delta}{2\log 2T_e} \right) + K_2 \left(\frac{\Delta}{2\log 2T_e} \right) \right\} \cosh \left(\frac{V}{4\log 2T_e} \right) - K_0 \left(\frac{\Delta}{2\log 2T_S} \right) - K_2 \left(\frac{\Delta}{2\log 2T_S} \right) \right] - V \sinh \left(\frac{V}{4\log 2T_e} \right) K_1 \left(\frac{\Delta}{2\log 2T_e} \right) \right)$$

$$(18)$$

Уравнение (16) можно приближенно решить на температурах $T_S \ll \Delta$. Полагая, что $T_e \sim T_S$ получаем следующее выражение:

$$T_e = T_S - \frac{1}{5\Sigma \mathcal{V}T_S^4} \frac{\Delta}{2e^2 R} \sqrt{\frac{\pi T_S \log 2}{\Delta}} \left(\Delta - \frac{V}{2}\right) e^{-\frac{\Delta}{2\log 2T_S}}$$
(19)

Таким образом, в нулевом приближении функция распределения представляет из себя диагональную матрицу с компонентами $tanh \frac{\varepsilon}{2T}$.

Уравнение же на функцию распределения \hat{h} получаются из (1) как Келдышевская компонента и, сокращая члены, соответствующие диагональным компонентам (1), представляется в виде:

$$-\varepsilon_{\rm Th} \left\{ \partial_x^2 \hat{h} - \partial_x \left[\hat{G}^R \circ \partial_x \hat{h} \circ \hat{G}^A \right] + \left[\hat{G}^R \circ \partial_x \hat{G}^R \right] \circ \partial_x \hat{h} - \left[\partial_x \hat{h} \right] \circ \left[\hat{G}^A \circ \partial_x \hat{G}^A \right] \right\} + \frac{1}{2} \left[\hat{\sigma}_3, \hat{G}^R \right]_+ \circ \partial_t \hat{h} - \frac{1}{2} \left[\partial_t \hat{h} \right] \circ \left[\hat{\sigma}_3, \hat{G}^A \right]_+ + i\varphi_- \circ \hat{G}^K = \left[I^{\rm St} \right]^K$$
(20)

Граничные условия на \hat{h} , получающиеся из (2) после преобразований с помощью условий на запаздывающие и опережающие компоненты, переписываются в форме (здесь индекс *S*, г подразумевает правый сверхпроводник):

$$\begin{aligned}
\partial_x \hat{h} - \hat{G}^R \circ \left[\partial_x \hat{h}\right] \circ \hat{G}^A &= \\
\frac{1}{2r} \left(\hat{G}^R \circ \hat{G}^R_{S,r} \circ \widehat{\delta h} - \hat{G}^R \circ \widehat{\delta h} \circ \hat{G}^A_{S,r} + \widehat{\delta h} \circ \hat{G}^A_{S,r} \circ \hat{G}^A - \hat{G}^R_{S,r} \circ \widehat{\delta h} \circ \hat{G}^A \right) (21) \\
\hat{h}_{S,r} - \hat{h} &= \widehat{\delta h} = \begin{pmatrix} \delta h_1 & 0 \\ 0 & \delta h_2 \end{pmatrix}
\end{aligned}$$

Выбор матрицы в диагональном виде возможен благодаря линейности уравнения (20). Из граничных условий (21) можно заметить, что минимальная поправка к функции распределения будет второго порядка по r^{-1} . В интересующих втором и третьем порядках полезно ввести параметризацию для $\hat{h} = h_0 \hat{1} + h_3 \hat{\sigma}_3$. В таком случае, уравнения разделяются путём взятия следа Tr [·] и Tr [$\hat{\sigma}_3$ ·] от полного матричного уравнения (20), после чего выражения принимают сравнительно простой вид:

$$\varepsilon_{\rm Th} \partial_x^2 h_0^{(2,3)} - \left(\partial_T + \tau_{\rm in}^{-1}\right) h_0^{(2,3)} = 0 \tag{22}$$

$$\varepsilon_{\rm Th} \partial_x^2 h_3^{(2,3)} - \left(\partial_T + \tau_{\rm in}^{-1}\right) h_3^{(2,3)} = i\varphi_- h_0^{(0)} \tag{23}$$

Здесь верхний индекс обозначает степень малости $h_{0,3}$ по параметру r^{-1} .

Разделение при помощи взятия соответствующих следов от уравнения (21) будет применяться ниже и для поиска граничных условий в интересующих первых двух нетривиальных порядках.

В этих уравнениях в силу оговоренной выше малости по параметру $\varepsilon_{\rm Th}/T_e$ в дальнейшем пренебрегается электрическим потенциалом. Таким образом, ито-говое приближение имеет следующий вид: $\Delta \gg T_{S,e} \gg \varepsilon_{\rm Th}$.

1.2 Первый порядок

1.2.1 Аномальные функции Грина

В главном порядке поправки есть лишь к аномальной функции Грина $f_{1,2}^R$, поэтому в этом и последующих порядках из матричного уравнения (1) будут браться только оффдиагональные компоненты, дающие искомые поправки. Таким образом, в описанных выше приближениях, уравнения и граничные условия принимают следующий вид:

$$\varepsilon_{\rm Th}\partial_x^2 f_{1,2}^R + \left[2i\varepsilon - \tau_{\rm in}^{-1}\right] f_{1,2}^R = 0 \tag{24}$$

$$\partial_{x} f_{1,2}^{R} \big|_{x=1/2} = \frac{1}{r} f_{S}^{R} e^{\pm iVt}$$

$$\partial_{x} f_{1,2}^{R} \big|_{x=-1/2} = \frac{1}{r} f_{S}^{R} e^{\mp iVt}$$
(25)

Тогда решения уравнения (24) записывается в следующем виде:

$$f_{1,2}^R(x,\varepsilon,t) = -\frac{f_0^R}{r\varkappa_\varepsilon \sin\varkappa_\varepsilon} \left\{ \cos[\varkappa_\varepsilon (x+1/2)] e^{\pm iVt} + \cos[\varkappa_\varepsilon (x-1/2)] e^{\mp iVt} \right\}$$
(26)

$$\varkappa_{\varepsilon}^{2} = \frac{2i\varepsilon}{\varepsilon_{\rm Th}} - \frac{1}{\tau_{\rm in}\varepsilon_{\rm Th}}$$
(27)

Стоит отметить, что выписанные выше функции не добавляют новых разрезов в комплексную плоскость переменной ε , так как все зависимости от \varkappa_e квадратичные.

Выражения для опережающих компонент получаются из общего соотношения нормировки (11), после чего, беря во внимание вид функций Грина, приходим к соотношениям вида: $f_{1,2}^R(\varepsilon,t) = f_{1,2}^A(-\varepsilon,t)$

Для корректности линеаризации уравнения Узаделя (24) необходима малость аномальной функции Грина в нормальной области по сравнению с функциями сверхпроводника, из чего следует неприменимость такого приближения для некоторых энергий: $|\Delta - |\varepsilon|| \ll \varepsilon_{\text{Th}}/r^2$

Полезно для дальнейших вычислений выписать значение аномальной функции Грина на правой границе со сверхпроводником:

$$f_{1,2}^R(x=1/2) = u^R(\varepsilon)e^{\pm iVt} + v^R(\varepsilon)e^{\mp iVt}$$
(28)

$$f_{1,2}^A(x=1/2) = u^A(\varepsilon)e^{\pm iVt} + v^A(\varepsilon)e^{\mp iVt}$$
(29)

$$u^{R(A)}(\varepsilon) = -f_S^{R(A)}(\varepsilon)u(\pm\varepsilon)$$
(30)

$$v^{R(A)}(\varepsilon) = -f_S^{R(A)}(\varepsilon)v(\pm\varepsilon)$$
(31)

$$u(\varepsilon) = \frac{\cos \varkappa_{\varepsilon}}{r \varkappa_{\varepsilon} \sin \varkappa_{\varepsilon}}$$
(32)

$$v(\varepsilon) = \frac{1}{r\varkappa_{\varepsilon}\sin\varkappa_{\varepsilon}}$$
(33)

1.3 Второй порядок

1.3.1 Нормальные функции Грина

Введём обозначения для сдвигов аргумента энергии на V/2 (Φ – произвольная функция): $\Phi_{\pm} = \Phi(\varepsilon \pm V/2); \ \Phi_{\pm\pm} = \Phi(\varepsilon \pm V); \ \Phi_{\pm\pm\pm} = \Phi(\varepsilon \pm 3V/2).$

Тогда благодаря соотношению нормировки (11) возможно найти диагональные компоненты функции Грина:

$$g_1^R(x,\varepsilon) = \frac{1}{2} \left\{ v_-^{R^2} \cos^2 \left[\varkappa_{\varepsilon-V/2} \left(x - \frac{1}{2} \right) \right] + v_+^{R^2} \cos^2 \left[\varkappa_{\varepsilon+V/2} \left(x + \frac{1}{2} \right) \right] + \left(e^{2itV} + e^{-2itV} \right) v_+^R v_-^R \cos \left[\varkappa_{\varepsilon-V/2} \left(x + \frac{1}{2} \right) \right] \cos \left[\varkappa_{\varepsilon+V/2} \left(x - \frac{1}{2} \right) \right] \right\}$$
(34)

$$g_2^R(x,\varepsilon) = \frac{1}{2} \left\{ v_+^{R^2} \cos^2 \left[\varkappa_{\varepsilon+V/2} \left(x - \frac{1}{2} \right) \right] + v_-^{R^2} \cos^2 \left[\varkappa_{\varepsilon-V/2} \left(x + \frac{1}{2} \right) \right] + \left(e^{2itV} + e^{-2itV} \right) v_-^R v_+^R \cos \left[\varkappa_{\varepsilon+V/2} \left(x + \frac{1}{2} \right) \right] \cos \left[\varkappa_{\varepsilon-V/2} \left(x - \frac{1}{2} \right) \right] \right\}$$
(35)

Вблизи правой границы эти функции можно переписать в следующем виде, где опережающие компоненты вновь найдены из соотношения (11):

$$g_1^{R(A)}(x=1/2,\varepsilon) = \frac{1}{2} \left\{ u_+^{R(A)^2} + v_-^{R(A)^2} + \left(e^{2itV} + e^{-2itV} \right) u_-^R v_+^R \right\}$$
(36)

$$g_2^{R(A)}(x=1/2,\varepsilon) = \frac{1}{2} \left\{ u_-^{R(A)^2} + v_+^{R(A)^2} + \left(e^{2itV} + e^{-2itV} \right) u_+^R v_-^R \right\}$$
(37)

1.3.2 Аномальные функции Грина

В этом порядке линеаризованное уравнение (24) не изменяется, однако граничные условия уточняются. Тогда, обозначая аномальные компоненты во втором порядке как $\tilde{f}_{1,2}^{R(A)}$, вблизи правого сверхпроводника из уравнений (2) получаются следующие соотношения:

$$\partial_x \tilde{f}^R_{1,2}\Big|_{x=1/2} = -\frac{1}{2r} \left[f^R_{1,2} \circ g_{S,\mp} + g_{S,\pm} \circ f^R_{1,2} \right]$$
(38)

Для получения граничных условий на левой границе необходимо произвести замену общего знака перед квадратными скобками и изменить знак напряжения. В таком случае, решения принимают следующий вид:

$$\tilde{f}_{1,2}^{R}(x) = \frac{e^{\mp itV}}{2r\varkappa_{\varepsilon}\sin\varkappa_{\varepsilon}} \left\{ 2u^{R}(\varepsilon)g_{S}^{R}\cos\left(\varkappa_{\varepsilon}\left(x-\frac{1}{2}\right)\right) + \cos\left(\left(x+\frac{1}{2}\right)\varkappa_{\varepsilon}\right)v^{R}(\varepsilon)\left[g_{S,--}^{R}+g_{S,++}^{R}\right]\right\} + \frac{e^{\pm itV}}{2r\varkappa_{\varepsilon}\sin\varkappa_{\varepsilon}} \left\{ 2u^{R}(\varepsilon)g_{S}^{R}\cos\left(\varkappa_{\varepsilon}\left(x+\frac{1}{2}\right)\right) + \cos\left(\left(x-\frac{1}{2}\right)\varkappa_{\varepsilon}\right)v^{R}(\varepsilon)\left[g_{S,--}^{R}+g_{S,++}^{R}\right]\right\} \right\} (39)$$

Вновь выписывая значения у правой границы, получаем при помощи (11):

$$\tilde{f}_{1,(2)}^{R}\left(x = \frac{1}{2}\right) = \alpha^{R} e^{(\bar{+})itV} + \beta^{R} e^{(\pm)itV}$$
(40)

$$\tilde{f}_{1,(2)}^{A}\left(x=\frac{1}{2}\right) = -\alpha^{A}e^{(\bar{+})itV} - \beta^{A}e^{(\bar{-})itV}$$
(41)

$$\alpha^{R(A)} = \frac{2u^{R(A)}g_{S}^{R(A)}v((\pm)\varepsilon) + u((\pm)\varepsilon)v^{R(A)}\left[g_{S,++}^{R(A)} + g_{S,--}^{R(A)}\right]}{2}$$

$$\beta^{R(A)} = \frac{2u^{R(A)}g_{S}^{R(A)}u((\pm)\varepsilon) + v((\pm)\varepsilon)v^{R(A)}\left[g_{S,++}^{R(A)} + g_{S,--}^{R(A)}\right]}{2}$$
(42)

Минус в уравнении (41) возникает из определения диагональных компонент функций Грина, для которых $(g_S^R)^* = -g_S^A$.

1.3.3 Функции распределения

Во втором порядке по r^{-1} граничные условия (21) выглядят следующим образом:

$$4\partial_x h_0^{(2)}\Big|_{x=1/2} = \frac{1}{2r} \left[J_1 - J_2 \right]$$
(43)

$$4\partial_x h_3^{(2)}\Big|_{x=1/2} = \frac{1}{2r} \left[J_1 + J_2 \right] \tag{44}$$

$$J_{1} = f_{1}^{R} \circ \left[e^{-iVt} \left(f_{S}^{R} \delta h_{1-} - f_{S}^{A} \delta h_{2+} \right) \right] + \left[e^{iVt} \left(f_{S}^{A} \delta h_{1-} - f_{S}^{R} \delta h_{2+} \right) \right] \circ f_{2}^{A}$$

$$J_{2} = f_{2}^{R} \circ \left[e^{iVt} \left(f_{S}^{A} \delta h_{1-} - f_{S}^{R} \delta h_{2+} \right) \right] + \left[e^{-iVt} \left(f_{S}^{R} \delta h_{1-} - f_{S}^{A} \delta h_{2+} \right) \right] \circ f_{1}^{A}$$
(45)

Здесь переход к левой границе осуществляется заменой знака напряжения, а также заменой общего знака в (43). Подобная симметрия граничных условий и временная зависимость функций $h_{0,3}$ в виде e^{i2nVt} позволяют искать поправки к h_0 , h_3 в виде ряда Фурье следующего вида:

$$h_0^{(2)} = \sum_n A_n^{(2)}(\varepsilon) \cos(\varkappa_{nV} x) e^{2inVt}$$
(46)

$$h_3^{(2)} = \sum_n B_n^{(2)}(\varepsilon) \sin(\varkappa_{nV} x) e^{2inVt}$$
(47)

$$\varkappa_{nV}^2 = \frac{2inV}{\varepsilon_{\rm Th}} - \frac{1}{\tau_{\rm in}\varepsilon_{\rm Th}}$$
(48)

Подставляя функции распределения в таком виде в граничные условия (43,44) можно получить выражения для коэффициентов (49,50), где $\Delta(m,k)$ – символ

Кронекера.

$$\begin{aligned} A_{n}^{(2)}(\varepsilon) &= -\frac{1}{8\varkappa_{nV}r\sin\left[\varkappa_{nV}/2\right]} \left[\Delta(n,1) \left\{ -\left[f_{S,+}^{A}\delta h_{1} - f_{S,+}^{R}\delta h_{2,++}\right]v_{-}^{R} + \left[f_{S,-}^{A}\delta h_{1--} - f_{S,-}^{R}\delta h_{2}\right]v_{+}^{A} \right\} + \\ \Delta(n,-1) \left\{ -\left[f_{S,+}^{R}\delta h_{1} - f_{S,+}^{A}\delta h_{2,++}\right]v_{-}^{A} + \left[f_{S,-}^{R}\delta h_{1,--} - f_{S,-}^{A}\delta h_{2}\right]v_{+}^{R} \right\} + \\ \Delta(n,0) \left\{ -\left[f_{S,-}^{A}\delta h_{1,--} - f_{S,-}^{R}\delta h_{2}\right]u_{-}^{R} - \left[f_{S,-}^{R}\delta h_{1,--} - f_{S,-}^{A}\delta h_{2}\right]u_{-}^{A} + \left[f_{S,+}^{R}\delta h_{1} - f_{S,+}^{A}\delta h_{2,++}\right]u_{+}^{R} + \left[f_{S,+}^{A}\delta h_{1} - f_{S,+}^{R}\delta h_{2,++}\right]u_{+}^{A} \right\} \right] \end{aligned}$$

$$(49)$$

$$B_{n}^{(2)}(\varepsilon) = \frac{1}{8\varkappa_{nV}r\cos\left[\varkappa_{nV}/2\right]} \left[\Delta(n,1) \left\{ \left[f_{S,+}^{A}\delta h_{1} - f_{S,+}^{R}\delta h_{2,++} \right] v_{-}^{R} + \left[f_{S,-}^{A}\delta h_{1,--} - f_{S,-}^{R}\delta h_{2} \right] v_{+}^{A} \right\} + \Delta(n,-1) \left\{ \left[f_{S,+}^{R}\delta h_{1} - f_{S,+}^{A}\delta h_{2,++} \right] v_{-}^{A} + \left[f_{S,-}^{R}\delta h_{1,--} - f_{S,-}^{A}\delta h_{2} \right] v_{+}^{R} \right\} + \Delta(n,0) \left\{ \left[f_{S,-}^{A}\delta h_{1,--} - f_{S,-}^{R}\delta h_{2} \right] u_{-}^{R} + \left[f_{S,-}^{R}\delta h_{1,--} - f_{S,-}^{A}\delta h_{2} \right] u_{-}^{A} + \left[f_{S,+}^{R}\delta h_{1} - f_{S,+}^{A}\delta h_{2,++} \right] u_{+}^{R} + \left[f_{S,+}^{A}\delta h_{1} - f_{S,+}^{R}\delta h_{2,++} \right] u_{+}^{A} \right\} \right]$$
(50)

Из вида коэффициентов, можно определить, область малости параметров. Тогда, считая $u^{R(A)} \sim r^{-1}, f^{R(A)} \sim 1$ приходим к требованию, что $\gamma r^2 \gg 1$. В случае энергий, близких к $\Delta \pm V/2$, где $f^R \sim r \sqrt{\Delta/\varepsilon_{\text{Th}}}$ приходим к требованию, что $\gamma \gg \sqrt{\Delta/\varepsilon_{\text{Th}}}$.

1.4 Третий порядок

1.4.1 Нормальные функции Грина

В третьем порядке поправка к диагональным компонентам получается аналогично предыдущему порядку, тогда, обозначая поправку к нормальной функции Грина как \tilde{g} и выписывая все члены искомого порядка из (15) приходим к

$$\tilde{g}_{1,2}^{R} = \frac{1}{2} \left[f_{1,2}^{R} \circ \tilde{f}_{2,1}^{R} + \tilde{f}_{1,2}^{R} \circ f_{2,1}^{R} \right]$$
(51)

В дальнейшем при вычислении тока важны будут только значения на границе. Поэтому в окрестности правого сверхпроводника получаем следующие выражения для запаздывающих и опережающих компонент (происхождение минуса аналогично таковому в \tilde{f}^A):

$$\tilde{g}_{1}^{R(A)} = \pm \frac{1}{2} \left\{ 2 \left(\beta_{+}^{R(A)} u_{+}^{R(A)} + \alpha_{-}^{R(A)} v_{-}^{R(A)} \right) + \left(e^{2itV} + e^{-2itV} \right) \left[\alpha_{+}^{R(A)} u_{-}^{R(A)} + \beta_{-}^{R(A)} v_{+}^{R(A)} \right] \right\}$$
(52)

$$\tilde{g}_{2}^{R(A)} = \pm \frac{1}{2} \left\{ 2 \left(\beta_{-}^{R(A)} u_{-}^{R(A)} + \alpha_{+}^{R(A)} v_{+}^{R(A)} \right) + \left(e^{2itV} + e^{-2itV} \right) \left[\alpha_{-}^{R(A)} u_{+}^{R(A)} + \beta_{+}^{R(A)} v_{-}^{R(A)} \right] \right\}$$
(53)

1.4.2 Аномальные функции Грина

В этом порядке разложения меняется и уравнение Узаделя. Тогда, обозначая третью поправку как $\bar{f}_{1,2}^{R(A)}$, уравнение (1) принимает вид:

$$-\varepsilon_{\rm Th}\partial_x \left[\partial_x \bar{f}_{1,2}^R - g_{1,2}^R \circ \partial_x f_{1,2}^R + f_{1,2}^R \circ \partial_x g_{2,1}^R\right] - \left(2i\varepsilon - \tau_{\rm in}^{-1}\right) \bar{f}_{1,2}^R = 0$$
(54)

Граничные условия у правой границы в искомом порядке принимают вид (55). Левая граница вновь отличается лишь заменой знака перед квадратной скобкой и знаком напряжения:

$$\partial_x \bar{f}_{1,2}^R - g_{1,2}^R \circ \partial_x f_{1,2}^R + f_{1,2}^R \circ \partial_x g_{2,1}^R = \frac{1}{2r} \left[-g_{1,2}^R \circ f_{S1,2}^R - \tilde{f}_{1,2}^R \circ g_{S2,1}^R - f_{S1,2}^R \circ g_{2,1}^R - g_{S1,2}^R \circ \tilde{f}_{1,2}^R \right]$$
(55)

Важным в дальнейшем свойством решения этих уравнений является появление гармоник $e^{\pm 3iVt}$, что соответствует появлению в электрическом токе в пятом порядке по r^{-1} гармоник вида e^{6iVt}

1.4.3 Функции распределения

В третьем порядке сохраняется симметрия граничных условий, указанная выше. Тогда, вводя обозначения $g_{S,1(2)}^R = g_{S,(\pm)}^R, f_{S,1(2)}^R = f_S^R e^{(\pm)iVt}$, граничные условия можно записать как (см. Приложение (120,121)). Сами же решения ищутся вновь в виде ряда по гармоникам 2V и записываются в виде:

$$h_0^{(3)} = \sum_{n=-1,0,1} A_n^{(3)}(\varepsilon) \cos(\varkappa_{nV} x) e^{2inVt}$$
(56)

$$h_3^{(3)} = \sum_{n=-1,0,1} B_n^{(3)}(\varepsilon) \sin(\varkappa_{nV} x) e^{2inVt}$$
(57)

Здесь коэффициенты даются выражениями (см. Приложение (122,123)). Стоит отметить, что старших гармоник в этом порядке не возникает.

1.5 Потенциал

Для вычисления потенциала во втором порядке необходимо взять след от келдышевской компоненты функции Грина, после чего для перехода к совпадающим моментам времени необходимо взять обратное преобразование Фурье от этого следа. Таким образом, для электрического потенциала в ведущем порядке получается следующее выражение:

$$\varphi(t) = \frac{1}{2} \int \mathrm{d}\varepsilon \left\{ h_3^{(2)} + \frac{1}{4} \left(g_2^R - g_1^R \right) \circ h_0^{(0)} + \frac{1}{4} h_0^{(0)} \circ \left(g_2^A - g_1^A \right) \right\}$$
(58)

Как и следовало, электрический потенциал оказался второго порядка малости по r^{-1} . В произвольной точке пространства, как видно из уравнения (58), потенциал мал, так как все аномальные функции Грина в нормальной области малы в меру экспоненциальной малости $v(\varepsilon)$. Аналогичные выражения, всегда содержащие в себе $v(\varepsilon)$, будут появляться и в более старших порядках. Вклад от $h_3^{(2)}$, не содержащий явной экспоненциальной малости, не вносит своего вклада в уравнения, так как не зависит от времени.

1.6 Вычисление тока

Ток вычисляется по стандартной для келдышевского формализма формуле $I(t) = \frac{\pi}{4R_N} \operatorname{Tr} \left[\hat{\sigma}_3 \hat{j}^K(t,t) \right]$, где $\hat{j}^K = \left(\check{G} \circ \partial_x \check{G} \right)^K$. Подобное выражение, аналогично вычислению электрического потенциала, приводит к интегралу по всем энергиям.

Граничные условия (2) содержат дополнительную малость по параметру r^{-1} , поэтому позволяют вычислять ток в $r^{-(n+1)}$ порядке, где n – порядок поправок, используемых для вычисления. В свою очередь, уравнение Узаделя (1) сохраняет ток в нормальной области, поэтому вычисления произведены при использовании значений около правого сверхпроводника. Из сказанного выше ясно, что главный порядок пропорционален r^{-1} .

1.6.1 Первый порядок

В главном порядке для тока получается сравнительно простое выражение:

$$I = \frac{1}{8R_N r} \int d\varepsilon \left\{ \delta h_2 \left(g_{S,-}^A - g_{S,-}^R \right) - \delta h_1 \left(g_{S,+}^A - g_{S,+}^R \right) \right\}$$
(59)

Здесь не важна энергия Таулесса, поэтому в пределе низких температур $T_e, T_S \ll \Delta$, что верно для изначальной постановки задачи этот интеграл можно оценить:

$$I(t) = \frac{1}{2r R_N} \theta(V - 2\Delta) \sqrt{V^2 - (2\Delta)^2}$$
(60)

Этот ответ вполне ожидаем, так как из определения r следует, что знаменатель равен $2R_{SN}$, что в главном порядке соответствует полному сопротивлению всего контакта $R_{\Sigma} \equiv 2R_{SN} + R_N$.

1.6.2 Второй порядок

Во втором порядке, производя сдвиги переменной интегрирования, можно получить следующее выражение

$$I^{(2)}(t) = \frac{1}{8R_{\Sigma}} \left\{ J_{h_s}^{(1)} + \left(J_0^{(1)} + J_+^{(1)} e^{2iVt} + J_-^{(1)} e^{-2iVt} \right) \right\}$$
(61)

В этом выражении вкладом, не зависящим от времени является только вклад $J_0^{(1)}$, даваемый выражением:

$$J_{0}^{(1)}(\varepsilon) \equiv \int d\varepsilon \tanh \frac{\varepsilon}{2T_{e}} \left[\left(f_{S,-}^{A} + f_{S,-}^{R} \right) \left(u_{-}^{A} + u_{-}^{R} \right) - \left(f_{S,+}^{A} + f_{S,+}^{R} \right) \left(u_{+}^{A} + u_{+}^{R} \right) \right]$$
(62)

Отметим, что все вклады, зависящие от времени, даваемые выражениями (см. Приложение (125,126,127)), как и следует, в сумме дают вещественный вклад в ток.

Рис. 2: Ток в первом порядке по r^{-1} при $\Delta = 30, \ \varepsilon_{\mathrm{Th}} = 1/8, \ \gamma = 0.1, \ r = 40$

1.6.3 Третий порядок

В третьем порядке интеграл для тока содержит в себе члены, происхождение которых различно, поэтому, разделяя ток на вклады от поправок к функциям Грина и функций распределения и оставляя только нулевую гармонику, получим:

$$I^{(3)} = \frac{1}{8R_{\Sigma}} \left[\frac{1}{4\varkappa_0 r} \left(\cot\frac{\varkappa_0}{2} + \tan\frac{\varkappa_0}{2} \right) J_+^{(2)} + J_f^{(2)} + J_g^{(2)} \right]$$
(63)

$$J_{+}^{(2)} = \int d\varepsilon \left(g_{S,+}^{R} - g_{S,+}^{A} \right) \left(u_{-}^{A} \left(\delta h_{2} f_{S,-}^{A} - \delta h_{1,--} f_{S,-}^{R} \right) + u_{-}^{R} \left(\delta h_{2} f_{S,-}^{R} - \delta h_{1,--} f_{S,-}^{A} \right) \right) + \left(g_{S,-}^{A} - g_{S,-}^{R} \right) \left(u_{+}^{A} \left(\delta h_{1} f_{S,+}^{A} - \delta h_{2,++} f_{S,+}^{R} \right) + u_{+}^{R} \left(\delta h_{1} f_{S,+}^{R} - \delta h_{2,++} f_{S,+}^{A} \right) \right)$$
(64)

Рис. 3: Различные вклады в ток во втором порядке по r^{-1} при $\Delta=30,\ \varepsilon_{\rm Th}=1/8,\ \gamma=0.1,\ r=40$

Дальнейший численный анализ показывает, что искомые нетривиальные эффекты соответствуют поправкам, даваемым изменением функции распределения (см. 3(с)). Оказывается, что пороговая особенность на $V \sim 2\Delta/3$ в пределе низких температур $\varepsilon_{\rm Th} \ll T_{e,S} \ll \Delta$ имеет корневой вид:

$$J_{+}^{(2)}\left(V \sim \frac{2\Delta}{3}\right) = 9\sqrt{3\Delta}\sqrt{V - \frac{2}{3}\Delta}\left[u\left(\frac{\Delta}{3}\right) + u\left(-\frac{\Delta}{3}\right)\right]\theta\left(V - \frac{2}{3}\Delta\right)$$
(65)

Рис. 4: Сравнение численного счёта для $J_{+}^{(2)}$ в пределе нулевых температур и корневой асимптотики (65)

Стоит отметить, что префактор, с которым $J_{+}^{(2)}$ входит в ток, обеспечивает экспоненциальную малость по параметру $\gamma^{1/2} = (\tau_{in} \varepsilon_{Th})^{-1/2}$. Вклад же с разностью тригонометрических функций, как и ожидалось, равен нулю.

1.6.4 Четвёртый порядок

В третьем порядке выражение для тока (см. Приложение (135)) содержит члены различного происхождения: поправки третьего порядка к функции распределения (Рис. 5(с)), поправки третьего порядка к нормальным функциям Грина (Рис. 5(d)), поправки третьего порядка к оффдиагональным компонентам (Рис. 5(b)), произведения поправок первого порядка к оффдиагональным компонентам и поправок второго порядка к функциям распределения (Рис. 5(а)).

Численный анализ вновь показывает, что все искомые эффекты, соответствующие андреевским отражениям приходят из старших поправок к функциям распределения (Рис. 5(с)), что и следовало ожидать, опираясь на выражения для коэффициентов $A^{(3)}$, $B^{(3)}$ (122, 123). Из этого можно сделать вывод, что андреевские отражения соответствуют изменениям функции распределения, как в случае, когда τ_{in} существенно, так и в противоположном случае, что видно из дальнейшего текста.

(а) Вклад $J_{fh}^{(3)}$ в полный ток, возникающий из-за поправок вида $f_{1,2}^{R(A)} \, h_{1,2}^{(2)}$

(b) Вклад $J_f^{(3)}$ в полный ток, возникающий из-за поправок $\bar{f}_{1,2}^{R(A)}$

(c) Вклад $J_h^{(3)}$ в полный ток, возникающий из-за поправок $h_{1,2}^{(3)}$

(d) Вклад $J_g^{(3)}$ в полный ток, возникающий из-за поправок $\tilde{g}_{1,2}^{R(A)}$

Рис. 5: Различные вклады в ток в третьем порядке по r^{-1} при $\Delta = 30, \ \varepsilon_{\rm Th} = 1/8, \ \gamma = 0.1, \ T_e = T_s, \ r = 40$

Отметим, что в пределе малых напряжений, когда $f_S^{R(A)} \to 1, g_S^{R(A)} \to 0$ нестационарный вклад в ток третьего порядка по r^{-1} (135), и первого порядка (127,125) в точности повторяют один из результатов работы [17].

1.7 Обсуждение полученных результатов

Рис. 6: 2 андреевских отражения в полупроводниковом подходе

Как видно из полупроводниковой интерпретации Джозефсоновского контакта (Рис. 6), искомые андреевские отражения это пороговый эффект и число возможных отражений изменяется на единицу, при переходе напряжения через критические значения $2\Delta/n$, где n = 1, 2, 3...

Подобные эффекты, становящиеся более существенными при уменьшении температуры, либо при увеличении граничного сопротивления, наблюдаются во вкладах в ток во втором и третьем порядках (Рис. 3(с) и рис. 5(с)).

Появление эффекта во втором относительном порядке, вообще говоря, не случайно, так как в случае со значительным τ_{in} основной вклад в этот эффект дают частицы, которые успевают отразиться строго 2 раза, так как большее число обыкновенных отражений увеличивают время нахождения в нормальной области, а значит и вероятность термализации, что, как видно из префактора перед $J^{(2)}_+$ приводит к сильному подавлению эффекта.

Стоит также отметить, что данный метод уже в третьем порядке становится некорректным для вычисления поправок к проводимости, вызванных неравновесностью, так как при достаточно больших напряжениях в (см. Приложение 135) основной вклад приходит от особенностей на $\pm \Delta$ в сверхпроводящих функциях Грина, которые обрезаются на $\varepsilon_{\rm Th}/r^2$, притом расходимости, начиная с третьего порядка, становятся степенными, а не логарифмическими. Такой вид расходимостей свидетельствует о том, что константа будет вычислена заведомо неправильно.

2 SINIS. Случай слабого взаимодействия с подложкой

В этом разделе будет повторен способ учёта влияния андреевских отражений на ток, описанный в [3, 2], а также описаны ключевые различия между этим способом и способом, описанным в предыдущем разделе.

2.1 Постановка задачи

Задача вновь полагается одномерной (см. Рис. 1), однако электрон-фононное взаимодействие полагается незначительным, то есть распределение в нормальной области не полагается термализованным. Контакт вновь считается длинным, притом длинным настолько, что вблизи правой границы наличие левой границы не важно. Когерентные эффекты вновь несущественны. Предположение о настолько большой длине позволяет решать стационарную задачу у левой границы и у правой границы по отдельности (после калибровочного преобразования вида (13)), после чего сшивать их вдалеке от сверхпроводников.

В этом подходе для щели удобнее параметризация в виде $\hat{\Delta} = i\hat{\sigma}_2 \Delta$. Смысл такой параметризации в том, что аномальная функция Грина вещественная при тех же значениях энергии, что и нормальная функции Грина, и обе они чисто мнимы при других. В дальнейшем это позволяет более интуитивный учёт андреевских отражений.

Для решения задачи вновь нужна параметризация для опережающих и запаздывающих функций Грина, здесь воспользуемся параметризацией через спектральный угол θ :

$$\hat{G}^{R} = \begin{pmatrix} \cosh\theta & \sinh\theta\\ -\sinh\theta & -\cosh\theta \end{pmatrix}$$

Для нахождения опережающей компоненты достаточно воспользоваться уравнением (11). Оффдиагональная компонента уравнения Узаделя (1) в такой параметризации принимает следующий вид:

$$\varepsilon_{\rm Th}\partial_x^2\theta + 2i\varepsilon\sinh\theta = 0 \tag{66}$$

Решение этого уравнение около одной из границ (здесь – для левой границы, находящейся в x = 0) имеет инстантонный вид, то есть полагается, что

сверхпроводящие корреляции далеко от границы не важны. У этого решения есть один свободный параметр θ_0 , который определяется граничными условиями Куприянова-Лукичёва (2), которые в заданной параметризации принимают вид (68):

$$\tanh \frac{\theta(x)}{4} = \exp\left[-x\sqrt{\frac{-2i\varepsilon}{\varepsilon_{\rm Th}}}\right] \tanh \frac{\theta_0}{4} \tag{67}$$

$$\frac{1}{r}\sinh(\theta_0 - \theta_S) + 2\sqrt{-i}\xi_{\varepsilon}^{-1}\sinh\frac{\theta_0}{2} = 0$$
(68)

Здесь $\xi_{\varepsilon} = \sqrt{2\varepsilon/\varepsilon_{\text{Th}}}$ имеет смысл обезразмеренной длины корреляции, а θ_S – спектральный угол, отвечающий объёмному сверхпроводнику, который определяется следующим равенством:

$$\theta_{S} = \left\{ -i\frac{\pi}{2} + \frac{1}{2}\log\frac{\Delta + |\varepsilon|}{\Delta - |\varepsilon|} \right\} \Theta(\Delta - |\varepsilon|) + \frac{1}{2}\log\left[\frac{\Delta + |\varepsilon|}{|\varepsilon| - \Delta}\right] \Theta(|\varepsilon| - \Delta)$$

2.2 Келдышевская компонента вблизи левой границы

Уравнения на функцию распределения вновь получаются из матричного уравнения Узаделя. В отсутствии сверхтока и сверхпроводникового параметра порядка эти уравнения принимают следующий вид (подробный вывод см. [1]):

$$\partial_x \left(\mathcal{D}_{0,3} \partial_x h_{0,3} \right) = 0 \tag{69}$$

Где $\mathcal{D}_{0,3}$ – перенормировка коэффициента диффузии, стремящаяся к единице вдалеке от любой из границ:

$$\mathcal{D}_{0,3} = \frac{1}{4} \text{Tr} \left[1 - \hat{G}^R \hat{\sigma}_{0,3} \hat{G}^R \hat{\sigma}_{0,3} \right]$$
(70)

Туннельные граничные условия (21) вблизи левого (правого) сверхпроводника принимают следующий вид:

$$(\bar{+})\mathcal{D}_{0,3}\partial_x h_{0,3} = r^{-1}(h_{0,3} - h_{0,3}^{(S)}) [N(\theta_0)N(\theta_S) \mp M_{0,3}(\theta_0)M_{0,3}(\theta_S)]$$

$$N(\theta) = \operatorname{Re} [\cosh \theta]$$

$$M_0(\theta) = \operatorname{Re} [\sinh \theta]$$

$$M_3(\theta) = \operatorname{Im} [\sinh \theta]$$

$$(72)$$

Для более явной интерпретации результатов удобно перейти к явным функциям распределения, которые определяются по аналогии с равновесным случаем:

$$\hat{h} = \hat{1} - 2 \begin{pmatrix} f_e & 0\\ 0 & f_h \end{pmatrix}$$

Отметим, что для сверхпроводника f_e , f_h – фермиевские функции распределения f_F .

Уравнения (70) вдалеке от границы, где $\mathcal{D}_{0,3}$ мало отличаются от единицы, интегрируемы явно. Тогда пользуясь электронно-дырочной интерпретацией, можно восстановить константу, заметив, что производная функции распределения пропорциональна току вероятности с константой, которая определяется из взаимосвязи между вероятностным и электрическим токами и равна сопротивлению нормальной области R_N . В результате уравнения (70) после однократного интегрирования принимают следующий вид:

$$\mathcal{D}_{0,3}\partial_x(f_e \pm f_h) = -I_{0,3}R_N \tag{73}$$

Токи I_0 , I_3 возможно разделить на дырочный и электронный по аналогии с функциями распределения f_0 , f_3 : $I_{0,3} = I_e \pm I_h$. Тогда, выражая электронный и дырочный токи из (73) приходим к следующему для них выражению:

$$R_N I_{e,h} = -\frac{1}{2} \left[\left(\mathcal{D}_0 \pm \mathcal{D}_3 \right) \partial_x f_e + \left(\mathcal{D}_0 - \mathcal{D}_3 \right) \partial_x f_h \right]$$
(74)

Выражая производные, имеющиеся в выражении (74), при помощи граничных условий (71) и учитывая функцию распределения в сверхпроводнике, приходим к выражению (75,76)

$$I_e = G_0(f_F - f_e) - \frac{G_3 - G_0}{2}(f_e - f_h) = G_T(f_F - f_e) - G_A(f_e - f_h)$$
(75)

$$I_h = G_0(f_F - f_h) + \frac{G_3 - G_0}{2}(f_e - f_h) = G_T(f_F - f_h) + G_A(f_e - f_h)$$
(76)

Здесь введены следующие обозначения, имеющие смысл проводимости:

$$R_{SN}G_0 = N(\theta_N)N(\theta_S) - M_0(\theta_N)M_0(\theta_S)$$
(77)

$$R_{SN}G_3 = N(\theta_N)N(\theta_S) + M_3(\theta_N)M_3(\theta_S)$$
(78)

$$G_T = G_0 \tag{79}$$

$$G_A = \frac{G_3 - G_0}{2}$$
(80)

Решения выше не учитывают эффекты, связанные с поправками к функциям распределения, вызванные наличием эффектов близости. Для их учёта достаточно ввести переопределение значения функции распределения на границе. Так, после второго интегрирования уравнения (73) решения можно получить в виде интеграла:

$$f_{0,3}(x) = f_{0,3}(0) - I_{0,3}R_N \int_0^x \mathrm{d}x \left[\mathcal{D}_{0,3}^{-1} - 1\right] - I_{0,3}R_N x \tag{81}$$

Так как интересующие значения x достаточно велики по сравнению с ξ_{ε} , то пределы интегрирования можно распространить до бесконечности, так как перенормировка коэффициента диффузии экспоненциально быстро выходит на единицу. Таким образом, эти поправки перенормируют значения функций распределения в нуле $\bar{f}_{0,3}(0,\varepsilon) = f_{0,3}(0,\varepsilon) - m_{0,3}$. В таком случае, чтобы выражения (75,76) оставались верны в том же виде, то необходимо аналогично перенормировать и «сопротивления»:

$$\bar{R}_{0,3} = G_{0,3}^{-1} + m_{0,3} \tag{82}$$

$$m_{0,3} = R_N \int_0^\infty \mathrm{d}x \left[\mathcal{D}_{0,3}^{-1} - 1 \right]$$
(83)

Такие перенормировки изменяют и $R_{A,T} = G_{A,T}^{-1}$ соответственно:

$$\bar{R}_A = 2 \left[\frac{1}{G_3^{-1} + m_3} - \frac{1}{G_0^{-1} + m_0} \right]^{-1}$$
(84)

$$\bar{R}_T = G_0^{-1} + m_0 \tag{85}$$

Здесь стоит отметить, что в силу выбора параметризации сверхпроводящей щели, проводимость G_T , определяемая уравнением (79) равна нулю при $|\varepsilon| < \Delta$

2.3 Решение у правой границы и сшивка

Для решения стационарной задачи у другой границы, как уже описывалось выше, необходимо совершить калибровочное преобразование, аналогичное (13), чтобы вся зависимость от напряжения перешла на противоположную сторону. При таком преобразовании «электронная» и «дырочная» строки у матричной функции распределения преобразуются по-разному (см. 13). Обозначая функции после калибровочного преобразования тильдой, получим, что $f_{e,h}(\varepsilon) = \tilde{f}_{e,h}(\varepsilon \pm V).$

Все дальнейшие вычисления после калибровочного преобразования аналогичны с точностью до замены $x \to 1 - x$ и знака перед током в уравнениях (73), что отвечает сохранению его направления. В таком случае, функции распределения имеют следующий вид:

$$\tilde{f}_e(\varepsilon) = \tilde{\bar{f}}_e(\varepsilon) - R_N \tilde{I}_{e,h}(\varepsilon) \left(x - 1\right)$$
(86)

Далее решения необходимо сшить в глубине нормальной области (x = 1/2). Так как уравнение Узаделя сохраняет ток, а физические наблюдаемые не изменяются при калибровочных преобразованиях, тогда $I_{e,h}(\varepsilon) = \tilde{I}_{e,h}(\varepsilon \pm V)$. С учётом вышесказанного, уравнение сшивки имеет следующий вид:

$$\bar{f}_{e,h}(-1/2,\varepsilon) = \tilde{\bar{f}}_{e,h}(1/2,\varepsilon\pm V) - R_N \tilde{I}_{e,h}(\varepsilon\pm V)$$

$$I_{e,h}(\varepsilon) = \tilde{I}_{e,h}(\varepsilon\pm V)$$
(87)

Разрешая это условие, приходим к следующей связи между перенормированными граничными значениями функций распределения:

$$\bar{f}_{e,h}(1/2,\varepsilon) - \bar{f}_{e,h}(1/2,\varepsilon \pm V) = R_N I_{e,h}(\varepsilon)$$
(88)

2.4 Вычисление тока

Для вычисления тока вновь используется стандартная формула:

$$I(t) = \frac{\pi}{4R_N} \text{Tr}\left[\hat{\sigma}_3 \hat{j}^K(t,t)\right]$$

В пренебрежении членами, которые соответствуют наличию сверхтока и когерентных эффектов, интеграл для тока принимает следующий вид:

$$I_{\Sigma} = \frac{1}{2eR_N} \int \mathrm{d}\varepsilon \mathcal{D}_3 \partial_x f_3$$

Или, выражая всё в терминах электронного и дырочного токов при помощи (74), приходим к ожидаемому выражению:

$$I_{\Sigma} = \frac{1}{2} \int \mathrm{d}\varepsilon \left[I_e - I_h \right] \tag{89}$$

Это выражение можно несколько упростить, записав его в терминах спектральной функции тока $J(\varepsilon)$, определяемой как:

$$I_n(\varepsilon) = \Delta(n, 2k+1)I_e(\varepsilon + (n-1)V) - \Delta(n, 2k)I_h(\varepsilon + nV)$$
(90)

$$J(\varepsilon) = \sum_{n=-\infty}^{\infty} I_n(\varepsilon)$$
(91)

В таком случае, полный ток I_{Σ} принимает следующий вид:

$$I_{\Sigma} = \frac{1}{2} \int_0^V \mathrm{d}\varepsilon J(\varepsilon) \tag{92}$$

Чтобы вычислять значения $I_n(\varepsilon)$ удобно ввести интерпретацию с помощью электрических цепей.

2.4.1 Эквивалентные цепи

Можно заметить, что уравнения (75, 76, 88) представляют собой аналог правил Кирхгофа, где в качестве сопротивлений выступают R_T , R_A , R_N , в качестве «потенциалов» выступают f_e , f_h , в качестве внешних потенциалов выступают f_F , а по самой цепи на каждом участке, соответствующем энергии $\varepsilon + nV$ течёт ток I_n .

Рис. 7: Элементы эквивалентных соединений, соответствующих а) уравнениям сшивки (88); граничным условиям при (75,76) при b) $|\varepsilon| > \Delta$, c) $|\varepsilon| < \Delta$

В описанном формализме становится понятным, как возможно определять функции распределения на подщелевых энергиях, так как при $R_T = 0$ соединение является последовательным, а значит ток сохраняется от последнего узла ниже щели вплоть до первого над щелью. Тогда определяя $M = -\lceil \frac{\varepsilon + \Delta}{V} \rceil$, $N = \lceil \frac{\Delta - \varepsilon}{V} \rceil$ ($\lfloor \cdot \rfloor / (\lceil \cdot \rceil)$) – округление вниз/(вверх)), что имеет смысл номера R_T с самой высокой отрицательной энергией с оответственно. Тогда получаем для функций распределения (напряжений) под щелью:

$$\bar{f}_e(\varepsilon) = f^d(\varepsilon + NV) + I_0 \left(NR_N + \sum_{n=1}^{N-1} \bar{R}_A(\varepsilon + nV) \right)$$
(93)
$$\bar{f}_h(\varepsilon) = f^u(\varepsilon + MV) - I_0 \left(|M|R_N + \sum_{n=M+1}^{-1} \bar{R}_A(\varepsilon + nV) \right)$$
(94)

Где введены следующие обозначения, соответствующие точке, от которой начинается подсчёт «потенциалов»:

$$f^{d(u)}(\varepsilon + NV) = \begin{cases} \bar{f}_{h,(e)}(\varepsilon + NV, -1/2) & |N| = 2k \\ \tilde{f}_{e,(h)}(\varepsilon + NV, 1/2) & |N| = 2k+1 \end{cases}$$

С развитым формализмом становится возможно перейти непосредственно к анализу SINIS-контакта.

2.5 Применение к SINIS-контакту

В пределе сильно непрозрачных границ андреевскими отражениями, которым соответствует $\bar{G}_A \neq 0$ становится возможно пренебречь на тех энергиях, когда они являются не единственным способом передачи тока. Таким образом, на энергиях $|\varepsilon| > \Delta$ можно считать, что в эквивалентных цепях отсутствуют резисторы \bar{R}_A и цепь можно представить в несвязанном виде, представленном на Рис. 9.

 $\varepsilon + 2V$ $\varepsilon + V$ $\varepsilon + V$ $\varepsilon - V$

Рис. 8: Бесконечная «лестница», получающаяся из совмещения уравнений (75, 76,88)

Рис. 9: Эффективная цепь для SINIS-контакта, цвета аналогичны таковым на Рис. 7. Цепь бесконечна в обе стороны. Здесь и далее $\varepsilon_n = \varepsilon + nV$

Пусть ток текущий на подщелевых энергиях *I*₀, тогда его можно найти как ток при последовательном подключении резисторов:

$$I_0 = \frac{f_F(\varepsilon_M) - f_F(\varepsilon_N)}{\bar{R}_T(\varepsilon_M) + \bar{R}_T(\varepsilon_N) + (N + |M|)R_N + \sum_{n=M+1}^{N-1} \bar{R}_A(\varepsilon_n)}$$
(95)

Такой же ток, соответственно, будет для всех n, таких что M < n < N. Для остальных же ток даётся следующим выражением:

$$I_n = \left(f_F(\varepsilon_{n-1}) - f_F(\varepsilon_n)\right) \left\{R_T(\varepsilon_{n+1}) + R_T(\varepsilon_n) + R_N\right\}^{-1}$$
(96)

Ток, даваемый равенством (96) является по сути своей тепловыми возбуждениями, так как при переходе к нулевой температуре $f_F(\varepsilon) \to \theta(-\varepsilon)$, то интегранд на промежутке интегрирования равен нулю.

Тогда при температурах много меньших сверхпроводящей щели ток принимает следующий вид:

$$I_{\Sigma} = \int_0^V \mathrm{d}\varepsilon \frac{|M| + N}{\bar{R}_T(\varepsilon_M) + \bar{R}_T(\varepsilon_N) + (N + |M|)R_N + \sum_{n=M+1}^{N-1} \bar{R}_A(\varepsilon_n)}$$
(97)

2.5.1 Асимптотические выражения для сопротивлений

Вводя новый параметр $\alpha = q_{\Delta}^{-1}/(2r)$, где $q_{\varepsilon} = \sqrt{2\varepsilon/\varepsilon_{\text{Th}}}$, методом простой итерации можно из уравнения (68) получить следующее асимптотическое выражение для θ_0

$$\theta_0 = \alpha \sqrt{\frac{i\Delta}{\varepsilon}} \sinh \theta_S - \alpha^2 \frac{i\Delta}{\varepsilon} \sinh \theta_S \cosh \theta_S \tag{98}$$

Вычисляя с помощью этого выражения (98) проводимости и поправки к сопротивлению получаем следующие асимптотики:

$$R_{SN}G_0 = \left[\frac{|\varepsilon|}{\sqrt{\varepsilon^2 - \Delta^2}} - \alpha \frac{\Delta^2}{\varepsilon^2 - \Delta^2} \sqrt{\frac{\Delta}{2|\varepsilon|}}\right] \Theta(|\varepsilon| - \Delta)$$
(99)

$$R_{SN}G_3 = \frac{|\varepsilon|}{\sqrt{\varepsilon^2 - \Delta^2}}\Theta(|\varepsilon| - \Delta) + \alpha \frac{\Delta^2}{\Delta^2 - \varepsilon^2} \left[\sqrt{\frac{\Delta}{2|\varepsilon|}} - \alpha \frac{\Delta \operatorname{sign}(\varepsilon)}{\sqrt{\Delta^2 - \varepsilon^2}}\right]\Theta(\Delta - |\varepsilon|) \quad (100)$$

$$m_0 = \frac{\alpha^2 \Delta^2 q_{\Delta}^{-1}}{2 \left| \Delta^2 - \varepsilon^2 \right|} \left(\frac{\Delta}{2|\varepsilon|} \right)^{\frac{3}{2}} \left[2 + \Theta(|\varepsilon| - \Delta) - \Theta(\Delta - |\varepsilon|) \right] R_N \tag{101}$$

$$m_{3} = \frac{\alpha^{2} \Delta^{2} q_{\Delta}^{-1}}{2 \left| \Delta^{2} - \varepsilon^{2} \right|} \left(\frac{\Delta}{2|\varepsilon|} \right)^{\frac{3}{2}} \left[-2 \operatorname{sign}(\varepsilon) - \Theta(\Delta - |\varepsilon|) + \Theta(|\varepsilon| - \Delta) \right] R_{N} \quad (102)$$

Однако выражение (98) получено в предположении малости θ_0 , что верно не при всех значениях энергий. Отдельно стоит рассмотреть случаи малой энергии и энергий, близких к Δ .

На энергиях ε таких, что $1 \gg \alpha^2 \gg |\varepsilon|/\Delta$ правая часть становится большой, тогда в качестве разложения θ_S достаточно ограничиться первым членом. В этом случае приходим к квадратному уравнению, корень которого выбирается из соображений сшивки асимптотик при энергиях $|\varepsilon| \sim \alpha^2 \Delta$. Тогда итоговое выражение принимает вид:

$$\sinh\frac{\theta_0}{2} = \frac{i\left(\sqrt{\varepsilon} - \sqrt{\varepsilon + 2i\alpha^2 \Delta}\right)}{2\alpha\sqrt{i\Delta}} \tag{103}$$

 G_0 в силу мнимости функций Грина сверхпроводника обнуляется автоматически, а для проводимости G_3 и поправки m_3 в ведущем порядке по малым энергиям:

$$R_{SN}G_3 = 1$$

$$m_3 = R_N q_{|\varepsilon|}^{-1} \left(1 - \sqrt{2}\right)$$
(104)

На энергиях таких, что $|\Delta - |\varepsilon|| \ll \alpha^2 \Delta \ll \Delta$ оставляя лишь большие экспоненты приходим к кубическому уравнению вида:

$$e^{3\theta_0/2} - e^{\theta_0/2} = \sqrt{\frac{\delta i}{\gamma}} \tag{105}$$

$$\gamma = \frac{2\left|\Delta - |\varepsilon|\right|}{\alpha^2 \Delta} \ll 1 \tag{106}$$

 $\delta = \operatorname{sgn}(|\varepsilon| - \Delta) \tag{107}$

Корень этого уравнения необходимо выбирать из соображений положительности проводимости и конечности поправки к сопротивлению m_0 . Тогда соответствующая асимптотика:

$$e^{\theta_0/2} = \gamma^{-1/6} e^{\pi i/12} \Theta(|\varepsilon| - \Delta) + \gamma^{-1/6} e^{-\pi i/12} \Theta(\Delta - |\varepsilon|)$$

$$R_{SN} G_0 = \frac{\sqrt{3}}{2\alpha\gamma^{1/6}} \Theta(|\varepsilon| - \Delta)$$

$$R_{SN} G_3 = \frac{1}{4\alpha\gamma^{5/6}} \left(\sqrt{3}\Theta(|\varepsilon| - \Delta) + \Theta(\Delta - |\varepsilon|)\right)$$

$$m_3 = -\sqrt{2} R_N q_{|\varepsilon|}^{-1}$$
(109)

$$m_0 = q_{|\varepsilon|}^{-1} R_N \gamma^{-1/6} \tag{110}$$

Вычисленных выше асимптотик хватает для того, чтобы численно оценить интеграл (97), что приводит к следующим зависимостям тока (Рис. 10(а)) и дифференциального сопротивления (Рис. 10(b)).

(a) Ток, посчитанный при помощи асимптотик из этого раздела

(b) Дифференциальное сопротивление, посчитанное при помощи асимптотик из этого раздела

Рис. 10: Результаты численного интегрирования при помощи вычисленных асимптотик

2.6 Обсуждение полученных результатов

2.6.1 Границы применимости теории

Вышеописанная теория существенно полагается на отсутствие неэластичных процессов в нормальной области, так как при сильно непрозрачных границах частица находится в ней достаточно долго, что увеличивает вероятность термализации, а значит и изменения тока. Для того, чтобы оценить влияния этих процессов необходимо сравнивать неэластичное время и время, которое частица находится в нормальной области. Для описания этого времени необходимо определить эффективное минимальное расстояние, которое проходит частица. До того, как выйти из нормальной области при напряжениях, меньших 2Δ частица совершает $\lfloor 2\Delta/V - 1 \rfloor$ андреевских отражений, из-за чего с необходимостью проходит расстояние $(2\Delta/V)L$. Таким образом, эффективное время, которое частица проводит там сводится к перенормированному диффузионному времени $\tau_{dif} = (2\Delta/V)^2/\varepsilon_{Th}$. Это время необходимо сравнивать с неэластичным τ_{in} . Таким образом, эта теория применима при $\tau_{dif} \ll \tau_{in}$.

2.6.2 Сравнение методов

Как видно из Рис. 10(а) и 3(с), в обоих рассмотренных случаях ток имеет ступенчатую структуру. Сама структура, однако, отличается наличием изменения производной тока на напряжениях, немного меньших критических $V \sim \frac{2\Delta}{n}$ в случае с отсутствием неэластичных процессов. Такое различие вызвано тем, что подобный рост для случая с наличием термализации проявляется лишь в старших порядках по r^{-1} , что видно, например, на Рис. 11(d) для особенности на $V \sim \Delta$. Это поведение связано с тем, что ток под критическими напряжениями возникает из поправок к функциям распределения, которые для более низких напряжений появляются в следующих порядках по r^{-1} , что соответствует отсутствию возможности покинуть нормальную область при более низких напряжениях, не отразившись андреевски ещё один раз, что в свою очередь увеличивает вероятность термализации. В случае же с $\tau_{\rm in}^{-1} = 0$ частица может находиться в нормальной области достаточно длительное время, после чего всё равно отразиться андреевски, из-за чего не возникает алгебраической малости эффекта.

3 Системы со слабым обменным полем

В этой части будут рассмотрены системы с наличием слабого обменного поля при помощи методов, развитых в предыдущих разделах данной работы.

В качестве таких систем вместо несверхпроводящего звена может быть использован сильно разбавленный ферромагнетик или же N/F бислой с малой толщиной ферромагнитного слоя, необходимой для пренебрежения распаривающим членом, описанном в [9]. Обменное поле \mathbf{h}_{ex} полагается постоянным, то есть ферромагнитная область полагается однодоменной, что обеспечивает сохранение проекции спина на направление поля \mathbf{h}_{ex} . Задача будет решаться для $\mathfrak{h} = \mathbf{h}_{ex}\sigma$ (здесь $\sigma = \pm 1$ отвечает различным значениям спина) произвольного знака, что соответствует зеемановскому вкладу в энергии для обоих сортов частиц.

$$\hat{\mathcal{H}} = \begin{pmatrix} \frac{p^2}{2m} - \mu + \mathfrak{h} & \Delta \\ \Delta^* & -\frac{p^2}{2m} + \mu + \mathfrak{h} \end{pmatrix}$$
(111)

Так как изначальный гамильтониан задачи имеет вид (111), то можно заметить, что добавление слабого обменного поля не изменяет структуры уравнений, а лишь изменяет значение энергии $\varepsilon \to \varepsilon + \mathfrak{h}$. Аналогичное преобразование происходит и в уравнении Узаделя (1), приводя его к следующему виду (112):

$$-\varepsilon_{\mathrm{Th}}\partial_x\left[\check{G}\circ\partial_x\check{G}\right] - i(\varepsilon + \mathfrak{h})\left[\check{\sigma}_3,\check{G}\right] + \frac{1}{2}\partial_T\left[\check{\sigma}_3,\check{G}\right]_+ + i\varphi_-\check{G} = \check{I}^{\mathrm{St}} \quad (112)$$

3.1 Сильное взаимодействие с подложкой

Наличие слабого обменного поля модифицирует уравнение Узаделя (1), но подобная замена не касается граничных условий, так как проникновение обменного поля в сверхпроводник это эффект старшего порядка. Таким образом, единственное отличие между системами с и без обменного поля в данном подходе соответствует замене $\varkappa_{\varepsilon} \rightarrow \varkappa_{\varepsilon+\mathfrak{h}}$ во всех выражениях для аномальных и обыкновенных функций Грина.

Уравнение на матричную функцию распределения (20) не содержит в себе явной зависимости от ε , а значит оно не будет содержать и явной зависимости от \mathfrak{h} . Однако, в силу того, что магнитное поле разделяет частицы по энергии, то

начальное приближение для функции распределения теперь будет содержать в себе h и будет иметь вид:

$$\hat{h}^{(0)} = \hat{1} \cdot \tanh\left(\frac{\varepsilon + \mathfrak{h}}{2T_e}\right)$$

Такое изменение соответствует наличию эффективного потенциала в несверхпроводящей области.

3.1.1 Зависимость тока от напряжения и обменного поля

Производя все вышеуказанные замены становится возможным вычислить вклады в ток при помощи выражений (60,62,134,133,64,135).

(а) Вклад в ток первого порядка $J_0^{(1)}$

(b) Вклад в ток второго порядка $J_{\Sigma}^{(2)}$

(c) Вклад в дифференциальную проводимость первого порядка $\frac{d}{dV} J_0^{(1)}$

(d) Вклад в дифференциальную проводимость второго порядка $\frac{d}{dV} J_{\Sigma}^{(2)}$

Рис. 11: Результаты численного интегрирования при значении параметров $\Delta = 30, \ \varepsilon_{\rm Th} = 1/8, \ \gamma = 0.1, \ T_e = T_s = 1, \ r = 40$

Как можно заметить из численного анализа (Рис. 11(c),11(d)). Получающиеся результаты симметричны относительно изменения знака у \mathfrak{h} . Эффекты от поля приводят к тому, что пороговые значения напряжения ($V \sim 2\Delta/n$) расщепляются на величины $\delta \sim \mathfrak{h}$.

В частности, асимптотическое выражение при низких температурах для $J^{(2)}_+$ в присутствии поля модифицируется следующим образом:

$$J_{+}^{(2)}\left(\sim\frac{2}{3}\Delta\right) = \frac{9\sqrt{3\Delta}}{2}\left[\sqrt{V-\frac{2}{3}\left(\Delta+\mathfrak{h}\right)}\left\{u(\Delta/3+\mathfrak{h})+u(-\Delta/3-\mathfrak{h})\right\} + \sqrt{V-\frac{2}{3}\left(\Delta-\mathfrak{h}\right)}\left\{u(\Delta/3-\mathfrak{h})+u(-\Delta/3+\mathfrak{h})\right\}\right]$$
(113)

Из уравнения (113) видно, что при дифференцировании по напряжению расходимость в дифференциальной проводимости уменьшается расщепляется. Сам вид тока изображён на Рис. 12(а). Подобное разделение особенности на две соответствует тому, что в пространстве Намбу в качестве базиса используются частицы и дырки с противоположным спином, на которые магнитное поле действует по-разному.

(а) Асимптотика $J^{(2)}_+(\sim 2/3\Delta)$ и сравнение с численным счётом

(b) Асимптотика $J^{(2)}_+(\sim \Delta)$ и сравнение с численным счётом

Рис. 12: Низкотемпературные асимптотики (сплошной цвет) и численный счёт (красный пунктир) для $J_+^{(2)}$ при значении параметров $\Delta = 30$, $\varepsilon_{\rm Th} = 1/8$, $\gamma = 0.1$, r = 40

Однако, особенность на напряжени
и $V \sim \Delta$ имеет иной (см. Рис. 12), логарифмический вид, а именно:

$$J_{+}^{(2)}(\sim\Delta) = \frac{4\Delta}{r} \left(\operatorname{Re}\left[\sqrt{\frac{i\varepsilon_{\mathrm{Th}}}{\Delta}} \log\left(\frac{\varepsilon_{\mathrm{Th}}\varkappa_{\Delta+\mathfrak{h}-V}^{2}}{4i\Delta}\right) \right] + \operatorname{Re}\left[\sqrt{\frac{i\varepsilon_{\mathrm{Th}}}{\Delta}} \log\left(\frac{\varepsilon_{\mathrm{Th}}\varkappa_{\Delta-\mathfrak{h}-V}^{2}}{4i\Delta}\right) \right] \right) \quad (114)$$

Как видно из выражения (114), здесь особенность вновь расщепляется на две линейно, однако с отличающимся от особенности на напряжении $V \sim \frac{2}{3}\Delta$ коэффициентом, хотя симметрия относительно замены знака \mathfrak{h} не изменяется.

3.2 Слабое взаимодействие с подложкой

В данном предельном случае изменение уравнения Узаделя касается только замены $\varepsilon \to \varepsilon + \mathfrak{h}$ в длине когерентности ξ_{ε} . Сама же логика решения остаётся неизменной, так как основывается на виде функций Грина сверхпроводящих берегов, где нет обменного поля. То есть, изменения касаются лишь непосредственных выражений для \bar{R}_A, \bar{R}_T . Поле здесь полагается достаточно малым, так что $\mathfrak{h} \ll \Delta$.

Граничные условия с наличием слабого обменного поля принимает следующий вид:

$$2\sinh\frac{\theta_0}{2} = \alpha \sqrt{\frac{i\Delta}{\varepsilon + \mathfrak{h}}}\sinh\left(\theta_S - \theta_0\right) \tag{115}$$

При помощи уравнения (115) можно получить следующие асимптотики для $G_{0.3}$ и $m_{0.3}$:

$$R_{SN}G_0 = \left(\frac{|\varepsilon|}{\sqrt{\varepsilon^2 - \Delta^2}} - \alpha \frac{\Delta^2}{\varepsilon^2 - \Delta^2} \sqrt{\frac{\Delta}{2|\varepsilon + \mathfrak{h}|}}\right) \Theta(|\varepsilon| - \Delta)$$
(116)

$$R_{SN}G_3 = \frac{|\varepsilon|}{\sqrt{\varepsilon^2 - \Delta^2}}\Theta(|\varepsilon| - \Delta) + \alpha \frac{\Delta^2}{\Delta^2 - \varepsilon^2} \left(\sqrt{\frac{\Delta}{2|\varepsilon + \mathfrak{h}|}} - \alpha \frac{|\varepsilon|}{\varepsilon + \mathfrak{h}} \frac{\Delta}{\sqrt{\Delta^2 - \varepsilon^2}}\right)\Theta(\Delta - |\varepsilon|) \quad (117)$$

$$m_{0} = \frac{\alpha^{2} \Delta^{2} q_{\Delta}^{-1}}{2 \left| \Delta^{2} - \varepsilon^{2} \right|} \left(\frac{\Delta}{2 \left| \varepsilon + \mathfrak{h} \right|} \right)^{\frac{3}{2}} \left[2 + \Theta(\left| \varepsilon \right| - \Delta) - \Theta(\Delta - \left| \varepsilon \right|) \right] R_{N}$$
(118)
$$\alpha^{2} \Delta^{2} \alpha^{-1} \left(-\Delta - \lambda^{\frac{3}{2}} \right)^{\frac{3}{2}}$$

$$m_{3} = -\frac{\alpha^{2} \Delta^{2} q_{\Delta}^{-1}}{2 \left| \Delta^{2} - \varepsilon^{2} \right|} \left(\frac{\Delta}{2 \left| \varepsilon + \mathfrak{h} \right|} \right)^{2} \left[2 \operatorname{sign}(\varepsilon + \mathfrak{h}) + \Theta(\Delta - \left| \varepsilon \right|) - \Theta(\left| \varepsilon \right| - \Delta) \right] R_{N}$$
(119)

Асимптотики для малых энергий в предположении малых полей получаются из (104) путём замены $q_{|\varepsilon|} \rightarrow q_{|\varepsilon+\mathfrak{h}|}$. При энергиях, близких к щели, можно пользоваться выражениями (108,109,110), производя аналогичную замену $q_{|\varepsilon|} \rightarrow q_{|\varepsilon+\mathfrak{h}|}$ с изменённым выражением для γ :

$$\gamma = \frac{2\left|\Delta - |\varepsilon|\right|}{\alpha^2 \Delta} \left(1 + \frac{\mathfrak{h}}{\Delta}\right)$$

Эти асимптотики приводят к зависимости тока от обменного поля, изображенной на Рис. 13:

Рис. 13: Результаты численного интегрирования для контакта со слабым обменным полем при $\alpha = 0.1, q_{\Delta} = 5.$

Результаты вновь симметричны относительно знака поля, так как электроны и дырки учитываются одновременно, а единственное отличие, появляющееся из-за наличия обмена – подавление тока после андреевского отражения вплоть до значений напряжения $V \sim 2\Delta/n + \mathfrak{h}$.

3.3 Обсуждение полученных результатов

3.3.1 Сравнение предельных случаев

В двух рассмотренных предельных случаях при наличии поля токи ведут себя по-разному, то есть в случае сильной термализации (см. Рис. 11, 12) од-

на особенность расщепляется на две, а в случае с отсутствием термализации пики остаются на месте, хоть и подавляются. Такое различие объясняется общим видом функции распределения электронов в несверхпроводящей области. В первом случае добавление слабого поля изменяет нулевое приближение, что приводит к тому, что уже разделённые частицы по спину частицы испытывают андреевские отражения, из-за чего влияние обменного поля является более важным эффектом. Во втором случае функция распределения частиц определяется преимущественно андреевскими отражениями, из-за чего влияние поля оказывает лишь подавляющий эффект, объясняющийся эффективным уменьшением длины когерентности в области с наличием слабого обмена.

3.3.2 Приложение к эксперименту

 (а) Дифференциальное сопротивление
 / от напряжения U для контакта Al-(Cu/Fe)-Al

(b) Критический ток *I_c* от длины образца *L* для 1) Al-Cu-Al, 2) Al-(Cu/Fe)-Al

Рис. 14: Некоторые результаты экспериментального исследования S(N/F)S-контакта. Изображения взяты из [7]

Наблюдаемое на Рис. 14(а) расщепление особенностей может говорить о том, что реализуется скорее случай с термализацией. Однако, сами результаты свидетельствуют о том, что особенности, наблюдаемые в дифференциальном сопротивлении в работе [7] не могут объясняться андреевскими отражениями в силу того, что наблюдаемые на эксперименте особенности соответствуют напряжениям $V \sim 60 \ \mu$ V, что для алюминия ($\Delta \sim 180 \ \mu$ eV) соответствует 6 андреевским отражениям. Но, как видно из полученных результатов, в обоих

рассмотренных предельных случаях более существенными оказываются особенности, отвечающие меньшему числу андреевских отражений, которых в экспериментальной зависимости не наблюдается.

Однако, критический ток в S(N/F)S-контакте подавлен по сравнению с SNSструктурой аналогичной геометрии (см Рис. 14(b)), что свидетельствует о том, что минищель также подавлена. Таким образом, однозначного объяснения расщепления особенности в дифференциальном сопротивлении всё ещё нет.

Заключение

В работе исследовано влияние андреевских отражений на зависимость тока от напряжения в длинных SINIS- и SI(N/F)IS-контактах при постоянном напряжении в случаях сильной термализации и когда термализации нет.

Для случая сильного взаимодействия с подложкой методами теории возмущений по малому параметру обезразмеренной проводимости границ со сверхпроводником r^{-1} вплоть до третьего порядка получены функции Грина и функции распределения, вплоть до четвёртого порядка получены выражения для тока. Для напряжений, отвечающих первым двум андреевским отражениям получены низкотемпературные асимптотики ВАХ: логарифмическая ($V \sim \Delta$) и корневая на $V \sim \frac{2}{3}\Delta$. Также исследованы результаты численного моделирования вольт-амперной характеристики для ненулевых температур, в них в частности наблюдается уширение указанных особенностей. При учёте обменного поля \mathfrak{h} эти особенности расщепляются на расстояния $\delta \sim 2\mathfrak{h}, \frac{4}{3}\mathfrak{h}$ для напряжений, отвечающих одному и двум отражений соответственно.

В случае слабого взаимодействия, методами эффективных цепей [3] получена ВАХ контакта с обменным полем. В этом пределе особенности, отвечающие андреевским отражениям видны при тех же значениях напряжения, хоть подавлены. Так n + 1-ое андреевское отражение подавлено, пока напряжения не станут больше $V \gtrsim \frac{2}{n} \Delta + \mathfrak{h}$.

В контексте эксперимента [7], можно сделать вывод, что скорее всего реализуется случай с термализацией. Однако полученные результаты не позволяют окончательно выяснить причину возникновения особенности в дифференциальном сопротивлении, так как пики соответствуют 6 андреевским отражениям, а особенностей, отвечающих меньшему числу отражений, в экспериментальной зависимости не наблюдается.

Список литературы

- [1] Wolfgang Belzig, Frank K Wilhelm, Christoph Bruder, Gerd Schön, and Andrei D Zaikin. Quasiclassical Green's function approach to mesoscopic superconductivity. *Superlattices and Microstructures*, 25(5-6):1251–1288, may 1999.
- [2] E. V. Bezuglyi, E. N. Bratus', V. S. Shumeiko, and G. Wendin. Current noise in diffusive SNS junctions in the incoherent MAR regime (a review). 2014.
- [3] E. V. Bezuglyi, E. N. Bratus', V. S. Shumeiko, G. Wendin, and H. Takayanagi. Circuit theory of multiple Andreev reflections in diffusive SNS junctions: The incoherent case. *Physical Review B*, 62(21), 2000.
- [4] A. I. Buzdin. Proximity effects in superconductor-ferromagnet heterostructures. *Rev. Mod. Phys.*, 77:935–976, Sep 2005.
- [5] J. C. Cuevas, J. Hammer, J. Kopu, J. K. Viljas, and M. Eschrig. Proximity effect and multiple Andreev reflections in diffusive Superconductor–Normal-metal– Superconductor junctions. *Phys. Rev. B*, 73:184505, May 2006.
- [6] T E Golikova, M J Wolf, D Beckmann, G A Penzyakov, I E Batov, I V Bobkova, A M Bobkov, and V V Ryazanov. Controllable supercurrent in mesoscopic superconductor-normal metal-ferromagnet crosslike Josephson structures. *Superconductor Science and Technology*, 34(9):095001, jul 2021.
- [7] Tatiana Golikova, Florian Huebler, Detlef Beckmann, Igor Batov, T. Karminskaya, M. Kupriyanov, Alexander Golubov, and Valeriy Ryazanov. 2012.
- [8] A. K. Gupta, L. Crétinon, N. Moussy, B. Pannetier, and H. Courtois. Anomalous density of states in a metallic film in proximity with a superconductor. *Phys. Rev. B*, 69:104514, 2004.
- [9] P. A. Ioselevich and D. A. Chuklanov. Minigap suppression in S(N/F)S junctions. *JETP Letters*, 113(10):631–637, 2021.

- [10] T. Karminskaya and M. Kupriyanov. Effective decrease in the exchange energy in S-(FN)-S josephson structures. *Journal of Experimental and Theoretical Physics Letters (JETP Letters)*, 85:286–291, May 2007.
- [11] Mikhail Yu. Kupriyanov, Konstantin K. Likharev, and Vladimir F. Lukichev. Influence of effective electron interaction on the critical current of Josephson weak links. *Journal of Experimental and Theoretical Physics*, 1981.
- [12] M. Yu. Kurpianov and V. F. Lukichev. Influence of boundary transparency on the critical current of dirty SS'S structures. 67(6):1163–1168, 1988.
- [13] Heinz-Olaf Müller and K. A. Chao. Electron refrigeration in the tunneling approach. *Journal of Applied Physics*, 82(1):453–456, 1997.
- [14] M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk. Subharmonic energy-gap structure in superconducting constrictions. *Phys. Rev. B*, 27:6739– 6746, Jun 1983.
- [15] Sukumar Rajauria, P. S. Luo, T. Fournier, F. W. J. Hekking, H. Courtois, and B. Pannetier. Electron and Phonon Cooling in a Superconductor–Normal-Metal–Superconductor Tunnel Junction. *Physical Review Letters*, 99(4), Jul 2007.
- [16] J. Rammer and H. Smith. Quantum field-theoretical methods in transport theory of metals. *Rev. Mod. Phys.*, 58:323–359, Apr 1986.
- [17] K. S. Tikhonov and M. V. Feigel'man. AC Josephson effect in the long voltagebiased SINIS junction. *JETP Letters*, 89(4), 2009.
- [18] Klaus D. Usadel. Generalized Diffusion Equation for Superconducting Alloys. *Phys. Rev. Lett.*, 25:507–509, 1970.

А Приложение. SINIS. Случай сильного взаимодействия с подложкой

В этом разделе будут явно выписаны вклады, которые не содержат принципиально новых эффектов.

А.1 Поправки к функции распределения

Отбирая лишь члены третьего порядка из граничных условий (21) приходим к следующему их виду:

$$4\partial_{x}h_{0}^{(3)}\Big|_{x=1/2} = \frac{1}{2r} \left[\left\{ \tilde{f}_{1}^{R} \circ f_{S,2}^{R} \circ \delta h_{1} - g_{S,1}^{R} \circ h_{1}^{(2)} - g_{1}^{R} \circ g_{S,1}^{R} \circ \delta h_{1} \right\} + \left\{ \tilde{f}_{2}^{R} \circ f_{S,1}^{R} \circ \delta h_{2} - g_{S,2}^{R} \circ h_{2}^{(2)} - g_{2}^{R} \circ g_{S,2}^{R} \circ \delta h_{2} \right\} - \left\{ \tilde{f}_{1}^{R} \circ \delta h_{2} \circ f_{S,2}^{A} - h_{1}^{(2)} \circ g_{S,1}^{A} - g_{1}^{R} \circ \delta h_{1} \circ g_{S,1}^{A} \right\} - \left\{ \tilde{f}_{2}^{R} \circ \delta h_{1} \circ f_{S,1}^{A} - h_{2}^{(2)} \circ g_{S,2}^{A} - g_{2}^{R} \circ \delta h_{2} \circ g_{S,2}^{A} \right\} + \left\{ \delta h_{1} \circ f_{S,1}^{A} \circ \tilde{f}_{2}^{A} + h_{1}^{(2)} \circ g_{S,1}^{A} + \delta h_{1} \circ g_{S,1}^{A} \circ g_{1}^{A} \right\} + \left\{ \delta h_{2} \circ f_{S,2}^{A} \circ \tilde{f}_{1}^{A} + h_{2}^{(2)} \circ g_{S,2}^{A} + \delta h_{2} \circ g_{S,2}^{A} \circ g_{2}^{A} \right\} - \left\{ f_{S,1}^{R} \circ \delta h_{2} \circ \tilde{f}_{2}^{A} + g_{S,1}^{R} \circ h_{1}^{(2)} + g_{S,1}^{R} \circ \delta h_{1} \circ g_{1}^{A} \right\} - \left\{ f_{S,2}^{R} \circ \delta h_{1} \circ \tilde{f}_{1}^{A} + g_{S,2}^{R} \circ h_{2}^{(2)} + g_{S,2}^{R} \circ \delta h_{2} \circ g_{2}^{A} \right\} \right]$$
(120)

$$4\partial_{x}h_{0}^{(3)}\Big|_{x=1/2} = \frac{1}{2r} \left[\left\{ \tilde{f}_{1}^{R} \circ f_{S,2}^{R} \circ \delta h_{1} - g_{S,1}^{R} \circ h_{1}^{(2)} - g_{1}^{R} \circ g_{S,1}^{R} \circ \delta h_{1} \right\} - \left\{ \tilde{f}_{2}^{R} \circ f_{S,1}^{R} \circ \delta h_{2} - g_{S,2}^{R} \circ h_{2}^{(2)} - g_{2}^{R} \circ g_{S,2}^{R} \circ \delta h_{2} \right\} - \left\{ \tilde{f}_{1}^{R} \circ \delta h_{2} \circ f_{S,2}^{A} - h_{1}^{(2)} \circ g_{S,1}^{A} - g_{1}^{R} \circ \delta h_{1} \circ g_{S,1}^{A} \right\} + \left\{ \tilde{f}_{2}^{R} \circ \delta h_{1} \circ f_{S,1}^{A} - h_{2}^{(2)} \circ g_{S,2}^{A} - g_{2}^{R} \circ \delta h_{2} \circ g_{S,2}^{A} \right\} + \left\{ \delta h_{1} \circ f_{S,1}^{A} \circ \tilde{f}_{2}^{A} + h_{1}^{(2)} \circ g_{S,1}^{A} + \delta h_{1} \circ g_{S,1}^{A} \circ g_{1}^{A} \right\} - \left\{ \delta h_{2} \circ f_{S,2}^{A} \circ \tilde{f}_{1}^{A} + h_{2}^{(2)} \circ g_{S,2}^{A} + \delta h_{2} \circ g_{S,2}^{A} \circ g_{2}^{A} \right\} - \left\{ \delta h_{2} \circ f_{S,2}^{A} \circ \tilde{f}_{1}^{A} + h_{2}^{(2)} \circ g_{S,2}^{A} + \delta h_{2} \circ g_{S,2}^{A} \circ g_{2}^{A} \right\} - \left\{ f_{S,1}^{R} \circ \delta h_{2} \circ \tilde{f}_{2}^{A} + g_{S,1}^{R} \circ h_{1}^{(2)} + g_{S,1}^{R} \circ \delta h_{1} \circ g_{1}^{A} \right\} + \left\{ f_{S,2}^{R} \circ \delta h_{1} \circ \tilde{f}_{1}^{A} + g_{S,2}^{R} \circ h_{2}^{(2)} + g_{S,2}^{R} \circ \delta h_{2} \circ g_{2}^{A} \right\} \right]$$
(121)

В частности, члены в разложении функций распределения:

$$h_0^{(3)} = \sum_{n=-1,0,1} A_n^{(3)}(\varepsilon) \cos(\varkappa_{nV} x) e^{2inVt}$$
$$h_3^{(2)} = \sum_{n=-1,0,1} B_n^{(3)}(\varepsilon) \sin(\varkappa_{nV} x) e^{2inVt}$$

$$\begin{split} A_n^{(3)} &= -\frac{1}{8r\varkappa_{nV}\sin\left[\varkappa_{nV}/2\right]} \times \\ & \left[\Delta(n,0) \left\{ \beta_-^R \left(f_{S,-}^R \delta h_2 - f_{S,-}^A \delta h_{1,--} \right) + \beta_-^A \left(-f_{S,-}^A \delta h_2 + f_{S,-}^R \delta h_{1,--} \right) + \right. \\ & \left. \beta_+^R \left(f_{S,+}^R \delta h_1 - f_{S,+}^A \delta h_{2,++} \right) + \beta_+^A \left(-f_{S,+}^A \delta h_1 + f_{S,+}^R \delta h_{2,++} \right) + \right. \\ & \left. \left(g_{S,-}^A - g_{S,-}^R \right) \left(\left(s_2^A + s_2^R \right) \delta h_2 + 2 \left(\tilde{A}_0 - \tilde{B}_0 \right) \right) + \right. \\ & \left. \left(g_{S,+}^A - g_{S,+}^R \right) \left(\left(s_1^A + s_1^R \right) \delta h_1 + 2 \left(\tilde{A}_0 + \tilde{B}_0 \right) \right) \right\} + \right. \\ & \Delta(n,1) \left\{ g_{S,-}^A q_1^A \delta h_{1,--} + \alpha_+^A \left(f_{S,-}^R \delta h_2 - f_{S,-}^A \delta h_{1,--} \right) + \right. \\ & \left. \left(g_{S,+++}^A - g_{S,+++}^R \right) q_1^R \delta h_{1,++} + \left(g_{S,---}^A - g_{S,---}^R \right) q_2^A \delta h_{2,--} - g_{S,+}^R q_2^R \delta h_{2,++} + \right. \\ & \left. \alpha_-^R \left(-f_{S,+}^A \delta h_1 + f_{S,+}^R \delta h_{2,++} \right) + g_{S,+}^A \left(q_2^R \delta h_{2,++} + 2 \tilde{A}_1 - 2 \tilde{B}_1 \right) - \right. \\ & \left. g_{S,---}^R \left(\tilde{A}_1 - \tilde{B}_1 \right) + 2 g_{S,+++}^A \left(\tilde{A}_1 + \tilde{B}_1 \right) - \right. \\ & \left. g_{S,---}^R \left(q_1^A \delta h_{1,--} + 2 \left(\tilde{A}_1 + \tilde{B}_1 \right) \right) \right\} + \right. \\ & \Delta(n,-1) \left\{ -g_{S,-}^R q_1^R \delta h_{1,--} + \alpha_+^R \left(-f_{S,-}^A \delta h_2 + f_{S,-}^R \delta h_{1,--} \right) + \right. \\ & \left. \left(g_{S,+++}^A - g_{S,+++}^R \right) q_1^A \delta h_{1,++} + \left(g_{S,---}^R - g_{S,---}^R \right) q_2^R \delta h_{2,--} + g_{S,+}^A q_2^A \delta h_{2,++} + \right. \\ & \left. \alpha_-^A \left(f_{S,+}^R \delta h_1 - f_{S,+}^A \delta h_{2,++} \right) - g_{S,+}^R \left(q_2^A \delta h_{2,++} + 2 \tilde{A}_{-1} - 2 \tilde{B}_{-1} \right) + \right. \\ & \left. 2 g_{S,---}^R \left(\tilde{A}_{-1} - \tilde{B}_{-1} \right) - \right. \\ & \left. 2 g_{S,---}^R \left(\tilde{A}_{-1} - \tilde{B}_{-1} \right) - \left. 2 g_{S,+++}^R \left(\tilde{A}_{-1} + \tilde{B}_{-1} \right) + g_{S,-}^R \left(q_1^R \delta h_{1,--} + 2 \left(\tilde{A}_{-1} + \tilde{B}_{-1} \right) \right) \right\} \right]$$

$$\begin{split} B_{n}^{(3)} &= \frac{1}{8r\varkappa_{nV}\cos\left[\varkappa_{nV}/2\right]} \times \\ & \left[\Delta(n,0) \left\{ -\beta_{-}^{R} \left(f_{S,-}^{R} \delta h_{2} - f_{S,-}^{A} \delta h_{1,--} \right) - \beta_{-}^{A} \left(-f_{S,-}^{A} \delta h_{2} + f_{S,-}^{R} \delta h_{1,--} \right) + \right. \\ & \left. \beta_{+}^{R} \left(f_{S,+}^{R} \delta h_{1} - f_{S,+}^{A} \delta h_{2,++} \right) + \beta_{+}^{A} \left(-f_{S,+}^{A} \delta h_{1} + f_{S,+}^{R} \delta h_{2,++} \right) + \right. \\ & \left. \left(g_{S,-}^{A} - g_{S,-}^{R} \right) \left(\left(s_{2}^{A} + s_{2}^{R} \right) \delta h_{2} + 2 \left(\tilde{A}_{0} - \tilde{B}_{0} \right) \right) + \right. \\ & \left. \left(g_{S,+}^{A} - g_{S,+}^{R} \right) \left(\left(s_{1}^{A} + s_{1}^{R} \right) \delta h_{1} + 2 \left(\tilde{A}_{0} + \tilde{B}_{0} \right) \right) \right\} + \right. \\ & \Delta(n,1) \left\{ g_{S,-}^{A} q_{1}^{A} \delta h_{1,--} + \alpha_{+}^{A} \left(f_{S,-}^{R} \delta h_{2} - f_{S,-}^{A} \delta h_{1,--} \right) + \right. \\ & \left. \left(g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{R} \delta h_{1,++} - \left(g_{S,---}^{A} - g_{S,---}^{R} \right) q_{2}^{A} \delta h_{2,++} + 2 \tilde{A}_{1} - 2 \tilde{B}_{1} \right) - \right. \\ & \left. 2 g_{S,---}^{R} \left(\tilde{A}_{1} - \tilde{B}_{1} \right) + 2 g_{S,+++}^{A} \left(\tilde{A}_{1} + \tilde{B}_{1} \right) - \right. \\ & \left. g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{A} \delta h_{1,+-} + \alpha_{+}^{R} \left(-f_{S,-}^{A} \delta h_{2} + f_{S,-}^{R} \delta h_{1,--} \right) + \left. \left(g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{A} \delta h_{1,+-} + \alpha_{+}^{R} \left(-f_{S,-}^{A} \delta h_{2} + f_{S,-}^{R} \delta h_{1,--} \right) + \right. \\ & \left. \left(g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{A} \delta h_{1,++} - \left(g_{S,---}^{A} - g_{S,---}^{R} \right) q_{2}^{A} \delta h_{2,++} - 2 \tilde{A}_{-1} - 2 \tilde{B}_{-1} \right) - \right. \\ & \left. \left. \left(g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{A} \delta h_{1,++} - \left(g_{S,---}^{A} - g_{S,---}^{R} \right) q_{2}^{A} \delta h_{2,++} - 2 \tilde{A}_{-1} - 2 \tilde{B}_{-1} \right) - \right. \\ & \left. \left. \left(g_{S,+++}^{A} - g_{S,+++}^{R} \right) q_{1}^{A} \delta h_{1,++} - \left(g_{S,+--}^{A} - g_{S,---}^{R} \right) q_{2}^{A} \delta h_{2,++} + 2 \tilde{A}_{-1} - 2 \tilde{B}_{-1} \right) - \right. \\ & \left. \left. \left(g_{S,+---}^{A} \left(f_{S,+}^{R} \delta h_{1} - f_{S,+}^{A} \delta h_{2,++} \right) + g_{S,+}^{R} \left(q_{2}^{A} \delta h_{2,++} + 2 \tilde{A}_{-1} - 2 \tilde{B}_{-1} \right) - \right. \\ & \left. \left. \left(g_{S,+---}^{A} \left(\tilde{A}_{-1} - \tilde{B}_{-1} \right) - 2 g_{S,+++}^{A} \left(\tilde{A}_{-1} + \tilde{B}_{-1} \right) \right) \right\} \right\} \right] \right] (123)$$

Где для вкладов, возникающих из поправок к функции распределения введены следующие обозначения:

$$\tilde{A}_n = \cos(\kappa_{nV}/2) A_n^{(2)}$$

$$\tilde{B}_n = \sin(\kappa_{nV}/2) B_n^{(2)}$$
(124)

А.2 Нестационарные вклады в ток во втором порядке

Полное выражение для тока во втором порядке имеет следующий вид:

$$I(t) = \frac{1}{8R_{\Sigma}} \left\{ J_{h_s}^{(1)} + \left(J_0^{(1)} + J_+^{(1)} e^{2iVt} + J_-^{(1)} e^{-2iVt} \right) \right\}$$
(125)

$$J_{h_s}^{(1)}(\varepsilon) \equiv \int \mathrm{d}\varepsilon \tanh\left(\frac{\varepsilon}{2T_S}\right) \left(f_S^A(\varepsilon) - f_S^R(\varepsilon)\right) \left[e^{2itV}v_{++}^A - v_{--}^A e^{-2itV} + e^{2itV}v_{--}^R - v_{++}^R e^{-2itV}\right]$$
(126)

$$J_{+}^{(1)}(\varepsilon) \equiv \int d\varepsilon \tanh\left(\frac{\varepsilon}{2T_{e}}\right) \left[v_{+}^{A}f_{S,-}^{R} - f_{S,+}^{A}v_{-}^{R} + f_{S,+++}^{A}v_{+}^{A} - f_{S,---}^{R}v_{-}^{R}\right]$$
(127)
$$J_{-}^{(1)}(\varepsilon) \equiv \int d\varepsilon \tanh\left(\frac{\varepsilon}{2T_{e}}\right) \left[-v_{-}^{A}f_{S,+}^{R} + f_{S,-}^{A}v_{+}^{R} - f_{S,---}^{A}v_{-}^{A} + f_{S,+++}^{R}v_{+}^{R}\right]$$
(128)

$$J_0^{(1)}(\varepsilon) \equiv \int \mathrm{d}\varepsilon \left(f_{S,-}^A + f_{S,-}^R \right) \left(u_-^A + u_-^R \right) - \left(f_{S,+}^A + f_{S,+}^R \right) \left(u_+^A + u_+^R \right)$$
(129)

А.3 Все вклады в стационарный ток в третьем порядке

После раскрытия всех свёрток и нескольких сдвигов переменной интегрирования приходим к следующему выражению:

$$I = \frac{1}{8R_{\Sigma}} \left[\frac{1}{4\varkappa_0 r} \left(\cot \frac{\varkappa_0}{2} + \tan \frac{\varkappa_0}{2} \right) J_+^{(2)} + \frac{1}{4\varkappa_0 r} \left(\tan \frac{\varkappa_0}{2} - \cot \frac{\varkappa_0}{2} \right) J_-^{(2)} + J_f^{(2)} + J_g^{(2)} \right]$$
(130)

Где введены следующие обозначения:

$$J_{-}^{(2)} = \int d\varepsilon \left(g_{S}^{R} - g_{S}^{A} \right) \left(\delta h_{2,+} - \delta h_{1,-} \right) \left(u^{A} + u^{R} \right) \left(f_{S}^{A} + f_{S}^{R} \right) = 0$$
(131)

$$J_{+}^{(2)} = \int d\varepsilon \left(g_{S,+}^{R} - g_{S,+}^{A} \right) \left(u_{-}^{A} \left(\delta h_{2} f_{S,-}^{A} - \delta h_{1,--} f_{S,-}^{R} \right) + u_{-}^{R} \left(\delta h_{2} f_{S,-}^{R} - \delta h_{1,--} f_{S,-}^{A} \right) \right) + \left(g_{S,-}^{A} - g_{S,-}^{R} \right) \left(u_{+}^{A} \left(\delta h_{1} f_{S,+}^{A} - \delta h_{2,++} f_{S,+}^{R} \right) + u_{+}^{R} \left(\delta h_{1} f_{S,+}^{R} - \delta h_{2,++} f_{S,+}^{A} \right) \right)$$
(132)

$$J_{g}^{(2)} = \frac{1}{2} \int d\varepsilon \left(u_{-}^{A^{2}} \left(\left(h_{2}^{(0)} - h_{S,-} \right) g_{S,-}^{A} + \delta h_{2} g_{S,-}^{R} \right) - u_{-}^{R^{2}} \left(\left(h_{2}^{(0)} - h_{S,-} \right) g_{S,-}^{R} + \delta h_{2} g_{S,-}^{A} \right) - v_{+}^{A^{2}} \left(\left(h_{2}^{(0)} - h_{S,-} \right) g_{S,-}^{A} + \delta h_{2} g_{S,-}^{R} \right) + v_{+}^{A^{2}} \left(\left(h_{2}^{(0)} - h_{S,-} \right) g_{S,-}^{A} + \delta h_{2} g_{S,-}^{R} \right) + u_{+}^{R^{2}} \left(\left(h_{1}^{(0)} - h_{S,+} \right) g_{S,+}^{R} + \delta h_{1} g_{S,+}^{A} \right) - u_{+}^{A^{2}} \left(\left(h_{1}^{(0)} - h_{S,+} \right) g_{S,+}^{A} + \delta h_{1} g_{S,+}^{R} \right) + v_{-}^{R^{2}} \left(\left(h_{1}^{(0)} - h_{S,+} \right) g_{S,+}^{R} + \delta h_{1} g_{S,+}^{A} \right) - v_{-}^{A^{2}} \left(\left(h_{1}^{(0)} - h_{S,+} \right) g_{S,+}^{A} + \delta h_{1} g_{S,+}^{R} \right) \right)$$

$$(133)$$

$$\begin{split} J_{f}^{(2)} &= \frac{1}{2} \int \mathrm{d}\varepsilon \, v_{-}^{A} v \left(\frac{V}{2} - \varepsilon \right) \left(- \left(g_{S,+}^{A} + g_{S,---}^{A} \right) \right) \left(-\delta h_{2} f_{S,-}^{A} + \delta h_{1,--} f_{S,-}^{R} \right) + \\ & v_{-}^{R} v \left(\varepsilon - \frac{V}{2} \right) \left(g_{S,+}^{R} + g_{S,---}^{R} \right) \left(-\delta h_{2} f_{S,-}^{R} + \delta h_{1,--} f_{S,-}^{A} \right) - \\ & 2 u_{-}^{A} g_{S,-}^{A} u \left(\frac{V}{2} - \varepsilon \right) \left(-\delta h_{2} f_{S,-}^{R} + \delta h_{1,--} f_{S,-}^{R} \right) + \\ & 2 u_{-}^{R} u \left(\varepsilon - \frac{V}{2} \right) g_{S,-}^{R} \left(-\delta h_{2} f_{S,-}^{R} + \delta h_{1,--} f_{S,-}^{A} \right) - \\ & v_{+}^{R} v \left(\varepsilon + \frac{V}{2} \right) \left(g_{S,-}^{R} + g_{S,+++}^{R} \right) \left(-\delta h_{1} f_{S,+}^{R} + \delta h_{2,++} f_{S,+}^{A} \right) + \\ & v_{+}^{A} v \left(-\varepsilon - \frac{V}{2} \right) \left(g_{S,-}^{A} + g_{S,+++}^{A} \right) \left(-\delta h_{1} f_{S,+}^{A} + \delta h_{2,++} f_{S,+}^{R} \right) - \\ & 2 u_{+}^{R} u \left(\varepsilon + \frac{V}{2} \right) g_{S,+}^{R} \left(-\delta h_{1} f_{S,+}^{R} + \delta h_{2,++} f_{S,+}^{A} \right) + \\ & 2 u_{+}^{A} g_{S,+}^{A} u \left(-\varepsilon - \frac{V}{2} \right) \left(-\delta h_{1} f_{S,+}^{A} + \delta h_{2,++} f_{S,+}^{A} \right) + \\ \end{split}$$

А.4 Стационарный ток в четвёртом порядке

Ток в четвёртом порядке в силу его громоздкости приводится в нераскрытом виде:

$$\begin{split} I(t) &= \frac{1}{8R_{\Sigma}} \int d\varepsilon \left[-\left\{ \bar{f}_{1}^{R} \circ \delta h_{2} \circ f_{S,2}^{A} - f_{1}^{R} \circ h_{2}^{(2)} \circ f_{S,2}^{A} \right. \\ &\left. - h_{1}^{(3)} \circ g_{S,1}^{A} - \tilde{g}_{1}^{R} \circ \delta h_{1} \circ g_{1,S}^{A} - \\ \left. \bar{f}_{2}^{R} \circ \delta h_{1} \circ f_{S,1}^{A} + f_{2}^{R} \circ h_{1}^{(2)} \circ f_{S,1}^{A} + h_{2}^{(3)} \circ g_{S,2}^{A} + \tilde{g}_{2}^{R} \circ \delta h_{2} \circ g_{S,2}^{A} \right\} - \\ &\left\{ -f_{S,1}^{R} \circ h_{2}^{(2)} \circ f_{2}^{A} + g_{S,1}^{R} \circ h_{1}^{(3)} + f_{S,1}^{R} \circ \delta h_{2} \circ \bar{f}_{2}^{A} + g_{S,1}^{R} \circ \delta h_{1} \circ \tilde{g}_{1}^{A} + \\ &\left. f_{S,2}^{R} \circ h_{1}^{(2)} \circ f_{1}^{A} - f_{S,2}^{R} \circ \delta h_{1} \circ \bar{f}_{1}^{A} - g_{S,2}^{R} \circ h_{2}^{(3)} - g_{S,2}^{R} \circ \delta h_{2} \circ \tilde{g}_{2}^{A} \right\} + \\ &\left\{ h_{S,1} \circ f_{S,1}^{A} \circ \bar{f}_{2}^{A} + h_{S,1} \circ g_{S,1}^{A} \circ \tilde{g}_{1}^{A} - h_{S,2} \circ f_{S,2}^{A} \circ \bar{f}_{1}^{A} - h_{S,2} \circ g_{S,2}^{A} \circ \tilde{g}_{2}^{A} \right\} - \\ &\left\{ h_{1}^{(0)} \circ \bar{f}_{1}^{A} \circ f_{S,2}^{A} - h_{1}^{(3)} \circ g_{S,1}^{A} + h_{1}^{(2)} \circ f_{1}^{A} \circ f_{S,2}^{A} + h_{1}^{(0)} \circ \tilde{g}_{1}^{A} \circ g_{S,1}^{A} - \\ &\left. h_{2}^{(0)} \circ \bar{f}_{2}^{A} \circ f_{S,1}^{A} + h_{2}^{(3)} \circ g_{S,2}^{A} - h_{2}^{(2)} \circ f_{2}^{A} \circ f_{S,1}^{A} - h_{2}^{(0)} \circ \tilde{g}_{2}^{A} \circ g_{S,2}^{A} \right\} + \\ &\left\{ \bar{f}_{1}^{R} \circ f_{S,2}^{R} \circ h_{S,1} - \tilde{g}_{1}^{R} \circ g_{S,1}^{R} \circ h_{S,1} - \bar{f}_{2}^{R} \circ f_{S,1}^{R} \circ h_{S,2} + \tilde{g}_{2}^{R} \circ g_{S,2}^{R} \circ h_{S,2} \right\} - \\ &\left\{ f_{S,1}^{R} \circ \bar{f}_{2}^{R} \circ h_{1}^{(0)} + f_{S,1} \circ f_{2}^{R} \circ h_{1}^{(2)} + g_{S,1}^{R} \circ h_{1}^{(3)} - g_{S,1}^{R} \circ \tilde{g}_{1}^{R} \circ h_{S,2} \right\} - \\ &\left\{ f_{1}^{R} \circ f_{2}^{R} \circ h_{S,1} - \tilde{g}_{1}^{R} \circ g_{S,1}^{R} \circ h_{2}^{(2)} - g_{S,2}^{R} \circ h_{2}^{(3)} + g_{S,1}^{R} \circ \tilde{g}_{1}^{R} \circ h_{1}^{(0)} - \\ &\left. f_{S,2}^{R} \circ \bar{f}_{1}^{R} \circ h_{2}^{(0)} - f_{S,2} \circ f_{1}^{R} \circ h_{2}^{(2)} - g_{S,2}^{R} \circ h_{2}^{(3)} + g_{S,2}^{R} \circ \tilde{g}_{2}^{R} \circ h_{2}^{(0)} \right\} \right\} \right]$$